
Client program interface

Moscow 2020

Client program interface 14.04.2020

2

Table of Contents
1. Quick start . 4

1.1. Installation and preparation to use . 4
1.1.1. Installation and preparation to use for Linux OS . 5

1.1.1.1. Components . 5
1.1.1.2. Installation . 5

1.2. Main objects . 6
1.3. How to work with Cgate objects. General overview . 7
1.4. Working with connection . 7
1.5. Receiving data streams . 9
1.6. Working with data schemes . 12

1.6.1. Data scheme usage policy . 18
1.7. Sending transactions and receiving replies . 20
1.8. How to work with p2sys . 22
1.9. Password change protocol objects . 22

1.9.1. Publisher p2mqpwd . 22
1.9.2. Listener p2mqpwdreply . 23

2. API description . 24
2.1. General agreements . 24
2.2. Life cycle of objects . 24
2.3. Usage in the multithreading environment . 25
2.4. Start-up and shutdown of the environment . 25

2.4.1. p2 log settings . 26
2.5. Connection . 27

2.5.1. cg_conn_new . 27
2.5.2. cg_conn_open . 28
2.5.3. cg_conn_close . 29
2.5.4. cg_conn_destroy . 29
2.5.5. cg_conn_process . 30
2.5.6. cg_conn_getstate . 31

2.6. Listener . 31
2.6.1. cg_lsn_new . 31
2.6.2. cg_lsn_open . 34
2.6.3. cg_lsn_close . 35
2.6.4. cg_lsn_destroy . 36
2.6.5. cg_lsn_getstate . 36
2.6.6. cg_lsn_getscheme . 37

2.7. Publisher . 37
2.7.1. cg_pub_new . 37
2.7.2. cg_pub_open . 38
2.7.3. cg_pub_close . 39
2.7.4. cg_pub_destroy . 39
2.7.5. cg_pub_getstate . 40
2.7.6. cg_pub_getscheme . 40
2.7.7. cg_pub_msgnew . 41
2.7.8. cg_pub_post . 42
2.7.9. cg_pub_msgfree . 43

2.8. Logging . 43
2.8.1. cg_log_trace . 43
2.8.2. cg_log_debug . 43
2.8.3. cg_log_info . 44
2.8.4. cg_log_error . 44
2.8.5. cg_log_tracestr . 44
2.8.6. cg_log_debugstr . 45
2.8.7. cg_log_infostr . 45
2.8.8. cg_log_errorstr . 45

2.9. Objects of the p2sys protocol . 46
2.9.1. P2sys connection . 46
2.9.2. P2sys listener . 46
2.9.3. P2sys publisher . 46

2.10. Auxiliary functions . 46
2.10.1. cg_bcd_get . 46
2.10.2. cg_getstr . 47
2.10.3. cg_msg_dump . 48

3. Tools description . 49
3.1. ‘Schemetool’ utility . 49

3.1.1. makesrc - structures generation . 49
3.2. Utility change_password . 50

4. API description for Java, .NET . 52
4.1. Description . 52

Client program interface 14.04.2020

3

4.1.1. API CGate for Java . 52
4.1.2. API CGate for .NET . 52

4.2. Object Cgate . 53
4.3. 'Connection' object . 53

4.3.1. Connection constructor . 53
4.3.2. 'Connection.dispose' method . 53
4.3.3. 'Connection.open' method . 53
4.3.4. Connection.close method . 54
4.3.5. Connection.process method . 54
4.3.6. 'Connection.state' property . 54

4.4. Listener object . 54
4.4.1. Listener constructor . 55
4.4.2. 'Listener.dispose' method . 55
4.4.3. 'Listener.open' method . 56
4.4.4. 'Listener.close' method . 56
4.4.5. 'Listener.State' property . 56
4.4.6. 'Listener.Scheme' property . 56
4.4.7. Listener.Handler property . 57

4.5. Publisher object . 57
4.5.1. Publisher constructor . 57
4.5.2. 'Publisher.dispose' method . 58
4.5.3. Publisher.open method . 58
4.5.4. Publisher.close method . 58
4.5.5. Publisher.State property . 58
4.5.6. Publisher.Scheme property . 59
4.5.7. Publisher.newMessage method . 59
4.5.8. Publisher.post method . 59

4.6. Message object . 60
4.6.1. Message.dispose . 60
4.6.2. Message.Type property . 60
4.6.3. Message.Data property . 60
4.6.4. Message.toString method . 61
4.6.5. Message types . 61

4.6.5.1. OpenMessage object . 61
4.6.5.2. CloseMessage object . 61
4.6.5.3. DataMessage object . 61
4.6.5.4. StreamDataMessage object . 61
4.6.5.5. TnBeginMessage object . 62
4.6.5.6. TnCommitMessage object . 62
4.6.5.7. P2MQTimeoutMessage object . 62
4.6.5.8. P2ReplLifeNumMessage object . 62
4.6.5.9. P2ReplClearDeletedMessage object . 62
4.6.5.10. P2ReplOnlineMessage object . 62
4.6.5.11. P2ReplStateMessage object . 62

Client program interface 14.04.2020

4

1. Quick start
1.1. Installation and preparation to use

The P2 CGate library consists of the following components:

• Plaza-2 system libraries

• P2MQRouter message router

• cgate gate library

• cgate.h — a header file with API description

All these components are required for development using the P2 CGate library.

To begin development, it is necessary to install the components by the installer corresponding to your operation system. Depending on the
operation system, the libraries and the header file will be installed either into default locations or into locations specified during installation
process. In further instructions the installation folder will be specified as ‘CGATE_HOME’.

Important
Login to the Plaza-2 system and the application key are required for work with the library. Logins to the test system Plaza-2
and test keys are used for development — they may be used freely by any developer. Production logins and keys are used for
production environment. Production keys may be obtained upon passing the certification procedure.

Building and running examples may be performed to verify whether installation has finished correctly and the system is ready for develop-
ment. To do this, it is necessary to perform the following steps:

1. Configuration of the Plaza-2 router according to the available login (this activity is performed automatically if an interactive installer was
used)

Open router setting file P2MQRouter, which is usually called client_router.ini and type in login and password in the section [AS:NS]:

[AS:NS]
USERNAME=<your login>
PASSWORD=<your password>

2. Building examples

Examples are located in the CGATE_HOME\sdk\samples folder for Windows platform and in the /usr/share/doc/cgate-examples folder
for Linux. Examples can be built with build scripts which vary depending on the used platform and programming language. For Linux OS,
it is recommended to prepare a copy of examples in the home folder and to build them from this folder.

3. Running examples

To run examples it is necessary to make sure that the P2MQRouter router is active and connected to the Plaza-2 network (by analysis
of router messages). Also please make sure that the Plaza-2 libraries are accessible (it may be required to add the CGATE_HOME \bin
directory to the PATH environment variable or to specify the CGATE_HOME\bin directory in your development environment), and also
that configuration files are available.

4. Description of examples

a. aggrspy

aggrspy is an example used for creating aggregated orderbook (sell and buy) for fixed instrument using the
'FORTS_FUTAGGR50_REPL' stream. By pressing 'Enter', snapshot of the orderbook will be saved into 'outfile' file.

Command line to run the example:

aggrspy ISIN_ID depth outfile [r]

Input arguments:

• isin_id - instrument ID;

• depth - orderbook depth to be saved into 'outfile' file (no more than 50);

• outfile - a file to save orderbook snapshot;

• r - change sorting direction to opposite (the parameter is used for instruments with backward sorting order).

b. repl

allows to receive data replica for a stream and saves all incoming messages into log file. When disconnected, the replica starts over.
The example does not have input parameters.

Client program interface 14.04.2020

5

c. repl_resume

repl_resume is an example similar to the 'repl' one. The difference is that when disconnected, the replica starts from the last
'TN_COMMIT' message. The example does not have input parameters.

d. send

send adds order to FORTS. Saves reply from the trading system into log file. The example does not have input parameters.

e. orderbook

orderbook is an example used for creating aggregated orderbook (sell and buy) for fixed instrument using the
'FORTS_ORDLOG_REPL' online stream and the 'FORTS_FUTORDERBOOK_REPL' snapshot stream. By pressing 'Enter', snapshot
of the orderbook will be saved into 'outfile' file.

Command line to run the example:

orderbook ISIN_ID depth outfile [r]

Input arguments:

• isin_id - instrument ID;

• depth - orderbook depth to be saved into 'outfile' file (no more than 50);

• outfile - a file to save orderbook snapshot;

• r - change sorting direction to opposite (the parameter is used for instruments with backward sorting order).

f. p2sys

p2sys is used for authorise router via cgate. Runs the following commands in loop:

i. Sends erroneous command set ('login', 'pwd'), receives the 'logon failed' message in reply;

ii. Sends the correct command set ('login', 'pwd');

iii. Sends the 'logout' request in reply on successful authorisation message;

iv. Returns to 1.

g. send_mt

send_mt - a multistream example of sending order. (Attention! This example can be compiled only by compilers supporting C++11.)

Stream 1 contains orders. Stream 2 contains replies for the orders sent.

1.1.1. Installation and preparation to use for Linux OS

1.1.1.1. Components

Cgate distributive kit for Linux OS contains an installation script and an archive file which contains loadable modules of projects 'cgate',
'cgate_java', 'include' files, documentation files and example files.

1.1.1.2. Installation

Installation steps:

1. To install the appropriate references, run

chmod 755 ./install.sh

2. Run

./install.sh ./cgate_linux_amd64-5.3.6.11.zip

Note
Please note that the archive file name depends on the software version, and may differ from the one shown above!

3. After receiving 'Please, enter cgate install path:' specify complete path to the folder where you want cgate to be unzipped.

4. After receiving 'Please, enter P2 login:' specify user's login name;

5. After receiving: 'Please, enter P2 password:' specify user's password.

Client program interface 14.04.2020

6

Note
Attention! The steps below differ depending on the Linux OS version currently installed on your computer!

Debian 6:

1. Install 'liblzo2-2' package (router startup)

2. Install 'ant' package

3. Install 'openjdk-6-jdk' package (java examples compiler)

4. Install 'g++' package (C++ examples compiler).

CentOS 6:

1. Install 'lzo' (router startup)

2. Install 'gcc' package

3. Install 'gcc-c++' package (C++ examples compiler)

4. Install 'ant' package (java examples compiler)

To compile a java example run

make_java_samples.sh

To run a java example please do the following steps:

1. Start the router by running

router.sh

2. Open the 'examples/java' file folder

3. Run the 'runjava.sh' script with the necessary parameters added.

1.2. Main objects
The library introduces a set of objects which are used to get access to different functions of the system. The main objects are:

Environment Describes working environment of the library. This object exists in the single copy. It is intended for initialization and
deinitialization of sub-systems, maintenance of operating logs and memory control.

Connection Provides access to the connection with Plaza-2 router

Message Describes a message. Messages are used for representing any information which is sent and received by the user —
data updating notifications, orders sent to the trading system, reports on orders execution, notifications on opening and
closure of data streams.

Listener Provides access to receiving of messages. This interface is used for receiving of all messages — updates of data streams,
reports on orders execution — if you receive any message, you do it by means of the Listener object.

Publisher Provides access to messages sending. Everything which is sent by your code is sent by means of one of the Publisher
objects.

The Listener and Publisher objects are tied to particular connections. You may use numerous connections, numerous listeners and pub-
lishers depending on the architecture of your application; usually, connections for receiving updates of market information are separated
from connections for sending orders.

The general scheme of the library objects within the client program is the following:

Client program interface 14.04.2020

7

General environment may include several connections; each connection contains arbitrary number of listeners and publishers and each of
them has a certain number of messages. In actual practice, the purpose of each connection and listeners and publishers linked with this
connection usually depends on actual demands of the application.

1.3. How to work with Cgate objects. General overview
Each Cgate object (connection, listener and publisher) has a special parameter in its URL settings, which is responsible for naming object
within the system. The object name must be unique, otherwise the system will return the 'CG_ERR_INVALIDARGUMENT' error message.
The 'name' parameter is not mandatory; by default, Cgate names object as 'noname_%d', where %d is a number. It is recommended to
users to name the objects in order to ease reading Cgate logs.

In Cgate, users are responsible for lifetimes of all objects. The '_new' methods allow to create an object, while the '_destroy' methods allow
to destroy them. In order to prevent memory and system recourses leaks, it is recommended to use a conjugate destroying method.

In Cgate, the following functions cannot be called from 'callback lsn':

• cg_lsn_destroy

• cg_conn_destroy

• cg_pub_destroy

• cg_pub_close

• cg_env_open

• cg_env_close

The 'lsn_close' and 'conn_close' functions can be called from 'callback lsn' after receiving message 'CG_MSG_OPEN'.

If there is the 'mq reply' publisher is used, then it should be opened first. Otherwise, we may receive the 'mq' message trying opening a
listener without any opened publisher.

An object behavior may differ on connection loss to a superior router according to different versions of Cgate. Thus, in earlier versions of
Cgate (versions before 1.3.10) , in case of loss of connection to a superior router, the connection changed its state to 'opening', and all the
linked objects closed. The connection invalidity notification appeared in a specified timeout interval (3 minutes for replication services).

In Cgate v. 1.3.10 objects behaviours differ. There is a special feature implemented into Plaza 2 v. 202, when services (P2Proxy or other)
notify the Cgate objects on their closing. The object linked to the connection closes immediately, while the object 'listener' closes in 3
replication timeout intervals (now 30 seconds). All other objects remain open and continue working.

1.4. Working with connection
The ‘Connection’ object provides interaction with the Plaza-2 router for sending and receiving messages. These objects may be created
in any quantity at any time during program operation with initialized environment; nevertheless, it is recommended to make connections at
the start of program and to destroy them just before exiting.

Connection is created by calling ‘cg_conn_new’, for instance, in the following way:

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=test", &conn);

In this example, a connection via the TCP/IP protocol with the Plaza-2 router on the port 4001 initiated on the same computer and with the
application name ‘test’ created. Calling this function initializes connection object but doesn’t lead to actual establishment of connection.

Connection is established by calling the 'conn_open' function:

Client program interface 14.04.2020

8

result = cg_conn_open(conn, 0);

, where ‘conn’ — the object initialized by the ‘cg_conn_new’ function call, and 0 (as the second parameter) means absence of connection
opening call parameters.

Connection is closed by calling ‘conn_close’:

result = cg_conn_close(conn);

In this case, interaction with the Plaza-2 router is closed but the object remains initialized and may be reopened.

Object is destroyed by the ‘conn_destroy’ function:

result = cg_conn_destroy(conn);

Initialization of connection may fail when installation integrity is corrupted or when there is incorrect configuration, e.g. incorrect parameters
have been specified. In this case, the best things to do are to shutdown program and analyze the configuration.

Opening of connection may fail with an error due to different reasons, e.g. the Plaza-2 router is not ready to service incoming connections,
there is a failure in the communication channel, etc. Opening of connection should be performed in a cyclical manner since the next attempt
of opening may become successful.

Example of the described behavior:

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=test", &conn);
if (result != CG_ERR_OK)
{
 // failure of connection initialization
 // further work is impossible
 // report on the error and exit the program
 return;
}

// initialized object conn exists in this place,
// this object may be worked with — get its status, open, close

while (haveToExit()) // main loop of the program
{
 uint32_t state;
 result = cg_conn_getstate(conn, &state); // get a status of connection
 if (result != CG_ERR_OK) // error in getting the connection status
 {
 // report the error and exit the program
 return;
 }
 switch (state)
 {
 case CG_STATE_CLOSED: // connection is closed, try to open
 result = cg_conn_open(conn, 0);
 // make a report in case of error
 break;
 case CG_STATE_ERROR: // connection is in the error state, it should be closed
 result = cg_conn_close(conn);
 // make a report in case of error
 break;
 case CG_STATE_ACTIVE: // connection is active, it may be worked with
 ...
 }
 ...
}

This cycle implements correct work with connection: if connection is closed, an attempt will be made to open it; if connection went to the
error state, then it will be closed. Work with connection is performed when it is active.

This example uses the cg_conn_getstate function:

uint32_t state;
result = cg_conn_getstate(conn, &state);

This function returns the state of the initialized ‘Connection’object. Messages may be sent and received only when the corresponding
connection is in the ‘active’ state ('CG_STATE_ACTIVE').

Being in the active state, the connection requires periodical calling of the event processing the ‘conn_process’ function, which performs
calling of user-defined callback functions and internal processing:

Client program interface 14.04.2020

9

case CG_ACTIVE:
{
 result = cg_conn_process(conn, 0, 0);
 if (result != CG_ERR_OK && result != CG_ERR_TIMEOUT)
 {
 // connection work is broken
 result = cg_conn_close(conn);
 }
 ...
 break;
}

The ‘conn_process’ function uses the second parameter as a time interval in milliseconds which is the time to wait for new event to take
place within the connection framework. Awaiting the new calls, the ‘conn_process’ call is blocked. If there were no messages during the
specified time interval, the function will return the ‘CG_ERR_TIMEOUT’ value — in this case, this value is not an error indicator and may be
used, for instance, to indicate that there are no incoming messages and that program logics may pass to the next task. The third parameter
is reserved.

Attention! If the second parameter value is 0, the lock mode will be off, and CPU load may reach 100%.

1.5. Receiving data streams
Data streams are received by means of the ‘Listener’ objects. The ‘Listener’ object is created linked to connection with ‘cg_lsn_new’ call:

result = cg_lsn_new(conn, "p2repl://FORTS_FUTTRADE_REPL", dataCB, user_data, &lsn);

In this example, ‘lsn’ is initialized by the ‘Listener’ object, which is set for receiving of the ‘FORTS_FUTINFO_REPL’ data stream via the
connection conn. Messages on data updates and on other events of the stream life cycle will be passed to the user-defined ‘dataCB’
callback function. When creating a subscription, it is possible to set different parameters including the client replication scheme; in this case,
initialization of the object will be performed in the following way:

result = cg_lsn_new(conn,
 "p2repl://FORTS_FUTTRADE_REPL;scheme=|FILE|ini/futtrade.ini|FutTrade",
 dataCB, user_data, &lsn);

, where the scheme description file path and the section name of the corresponding ini-file are set in the ‘scheme’ parameter by the string
of a special format.

Upon successful calling of the ‘cg_lsn_new’ function, the object goes into the initialized but non-active state. In fact, the stream is opened
by calling the ‘cg_lsn_open’ function:

result = cg_lsn_open(lsn, 0);

In this example, the data stream is opened without parameters, which means that it will be opened with default parameters:

• number of the data scheme life is not set (equal to 0)

• revisions of all tables are equal to 0 which means that they will be received anew

• replication mode is selected as snapshot+online which leads to receiving of tables snapshot (or their full history) and then switching to
online data receiving

Parameters are specified as a string:

result = cg_lsn_open(lsn, "mode=online");

In this case, the stream will be opened on the online mode which skips the initial snapshot stage. In the online mode, if connection is lost, data
stream continuity will not be guaranteed. See description of the ‘cg_lsn_open’ function for detailed information on supported parameters.

The ‘cg_lsn_open’ function may return the error code in different cases: temporary unavailability of the stream, malfunction of the channel
operation. For correct operation it is required to perform cyclical opening of flows.

The stream is closed by calling the ‘cg_lsn_close’ function:

result = cg_lsn_close(lsn);

In this case, the listener is disconnected from data receiving, and updates of this stream are no longer transmitted through the connection;
the object itself remains initialized and may be reopened, including opening with different parameters.

The object is destroyed by calling ‘cg_lsn_destroy’:

result = cg_lsn_destroy(lsn);

After that, the ‘lsn’ object is released, and the further work with this object becomes impossible.

For correct receiving the data updates, the ‘Listener’ object must call the ‘conn_process’ function for the connection to the object it is tied
to. Data receiving frequency does not exceed the frequency of the ‘conn_process’ function calling. Therefore, in order to provide maximum

Client program interface 14.04.2020

10

data receiving speed it is required to provide maximum possible frequency of the ‘conn_process’ function calling for desired connections.
When the 'con_process' call is absent for connection within timeout = 30 seconds time interval, the listener will be disconnected. It is not
recommended to call 'conn_process' less frequent than once per 10 seconds.

Receiving of data and occurrence of other events in the life cycle of the data stream is accompanied by calling of the user-defined ‘lsn_new’
callback function which looks like:

typedef CG_RESULT (*CG_LISTENER_CB)(cg_conn_t* conn,
 cg_listener_t* listener,
 struct cg_msg_t* msg,
 void* data);

The following information is transferred to the callback function:

• ‘conn’ — connection the listener is tied to

• ‘listener’ — the 'Listener' object

• ‘msg’ — received message

• ‘data’ — user data which were transferred as of the moment of the ‘lsn_new’ function calling

The ‘msg’ message which is transferred to the user-defined function is generally described by the following structure:

struct cg_msg_t
{
 uint32_t type; // Message type
 size_t data_size; // Amount of data
 void* data; // Pointer to data
};

Any message, which is delivered to the user-defined function, has the listed fields in any case.

Particular message type is identified with the ‘type’ field analysis. The following message types are used when data stream is received:

CG_MSG_OPEN The message is delivered at the moment of data stream activation. This event surely occurs be-
fore receiving of any data on this subscription. For data streams, delivery of the message means
that the data scheme was agreed and is ready to use (for more details see Data schemes). This
message does not contain additional data, and its ‘data’ and ‘data_size’ fields are not used.

Please note, that the 'cg_pub_getscheme', 'cg_lsn_getscheme' methods can be called only after
receiving the 'CG_MSG_OPEN'. Before that, scheme is not defined.

CG_MSG_CLOSE The message is delivered at the moment of data stream closure. Delivery of the message means
that the stream was closed by the user or the system. The 'data' field contains pointer to 'int', the
address contains a reason for closing the listener. There may be the following reasons:

• CG_REASON_UNDEFINED - undefined;

• CG_REASON_USER - the reason is returned by user to the listener's callback;

• CG_REASON_ERROR - internal error;

• CG_REASON_DONE - 'cg_lsn_destroy' method called;

• CG_REASON_SNAPSHOT_DONE - snapshot received.

CG_MSG_TN_BEGIN Means the moment when receiving of the next data block starts. Along with the next message,
may be used by the program logic for data integrity control. This message does not contain
additional data, and its ‘data’ and ‘data_size’ fields are not used.

CG_MSG_TN_COMMIT Means the moment when receiving of the next data block is completed. By the moment this
message is delivered, it may be safely assumed that data received under this subscription are
consistent and reflect the inter-synchronized tables. This message does not contain additional
data, and its ‘data’ and ‘data_size’ fields are not used.

CG_MSG_STREAM_DATA The message indicating delivery of stream data. The ‘data_size’ field contains the amount of
data received; ‘data’ indicates the data themselves. The message itself contains additional fields
which are described by the ‘cg_msg_streamdata_t’ structure. See the information presented
below in this section for more details on data receiving.

CG_MSG_P2REPL_ONLINE Stream switching to the online mode — it means that receiving of the initial snapshot was com-
pleted, and the ‘CG_MSG_STREAM_DATA’ messages below will bear online data. This mes-
sage does not contain additional data, and its ‘data’ and ‘data_size’ fields are not used.

CG_MSG_P2REPL_LIFENUM The scheme life number was changed. This message means that previous data, which were re-
ceived regarding the stream are not up-to-date and should be deleted. This will be accompanied

Client program interface 14.04.2020

11

by retranslation of data on the new data scheme life number. The ‘data’ field of the message
indicates an integer value containing the new scheme life number; the ‘data_size’ field indicates
the size of the integral type. For more information about processing of scheme’s life number see
the end of this section.

CG_MSG_P2REPL_CLEARDELETED Mass deletion of outdated data was performed. The ‘data’ field of the message indicates the
‘cg_data_cleardeleted_t’ structure, which indicates the number of table and the number of re-
vision — data in this table issued prior to this revision are deemed to be deleted. If revision
number cg_data_cleardeleted_t == CG_MAX_REVISON, then the next revision numbers will
continue from 1.

CG_MSG_P2REPL_REPLSTATE The message indicates the state of data stream; it is sent before closure of the stream. The ‘data’
field of the message indicates the line, which indicates the encoded state of the data stream
as of the moment the message is delivered — the data scheme, table revision numbers and
the scheme life number are saved as for the time of receiving the last 'CG_MSG_TN_COMMIT'
message (please note, that if you reopened the 'replstate' stream, all revisions received after
the last 'CG_MSG_TN_COMMIT' message will be resend again!) This line may be transferred
for calling of the cg_lsn_open function as the ‘replstate’ parameter on the same stream on the
next time which will provide continuation of data receiving upon shutdown of the stream.

When the ‘CG_MSG_STREAM_DATA’ event occurs, the ‘msg’ parameter of the user-defined callback function contains pointer to the
extended data structure:

struct cg_msg_streamdata_t
{
 uint32_t type; /// Message type = CG_MSG_STREAM_DATA
 size_t data_size; /// Data size
 void* data; /// Data pointer
 int64_t owner_id; /// Message owner id
 size_t msg_index; /// Message number in active scheme
 uint32_t msg_id; /// Unique message ID (if applicable)
 const char* msg_name; /// Message name in active scheme
 int64_t rev; /// Message sequence number
 size_t num_nulls; /// Size of presence map
 uint8_t* nulls; /// Presence map. Contains 1 for NULL fields
 uint64_t user_id; /// User ID message is intended for
};

The extended structure is accessed in the following way:

CG_RESULT dataCallback(cg_conn_t* conn,
 cg_listener_t* listener,
 struct cg_msg_t* msg,
 void* data)
{
 switch(msg->type)
 {
 case CG_MSG_STREAM_DATA:
 {
 // bringing the indicator to the extended structure
 cg_msg_streamdata_t* replmsg = (cg_msg_streamdata_t*)msg;
 // extended structure may be used here
 ...
 }
 ...
 }
}

This structure may be used to determine the table number and its name in the data scheme — this information is accessible in the ‘msg_index’
and ‘msg_name’ fields of the structure. For the Plaza-2 data stream, the ‘msg_id’ field is not used and its value is 0. The ‘rev’ field contains
record revision (update number) in the table, and the ‘nulls’ field may contain the indicator of byte array which determines whether the
record contains a particular field or not.

Data, which the ‘data’ message indicator refers to, are structured according to the data scheme applied in this subscription. See the next
section for details on data schemes and access to desired record fields.

Life number is a scheme’s attribute, which allows to validate accuracy of data transmitted in a data stream. The scheme life number of
server should be equal to that of the client. This equality is verified at opening of the replication stream; if two life numbers are not equal, it
means that some previously received data are not fresh, and will be therefore deleted. After that, the special ‘CG_MSG_P2REPL_LIFENUM’
notification sends out, containing a new scheme life number.

The client scheme’s life number is specified in the ‘cg_lsn_open’ function parameters:

• cg_lsn_open(lsn, "lifenum=%d"). It is allowed to set "lifenum=0"; the "lifenum=" line is also allowed, being equal to "lifenum=0".

Client program interface 14.04.2020

12

• cg_lsn_open(lsn, "replstate=%s") – allows to retrieve the replication stream from the status line. The status line is a line, containing
encoded replication stream status as of the time of its closing. The stream state data includes the following data: data scheme, tables
revisions numbers and scheme life number. The status line is sent out within the ‘CG_MSG_P2REPL_REPLSTATE’ notification, before
closing of data stream.

Please note, that it is prohibited to specify the life number values in both 'lifenum' and 'replstate' at the same time!

The life number value is always a decimal digit. Specifying a non-decimal digit as a life number value will cause the error at starting the
listener.

After the client life number was successfully sent, the verification procedure starts. The three following results are possible:

• clientLifeNumber < serverLifeNumber. In this case, the listener starts. The client code before ‘CG_MSG_OPEN’ receives the
‘CG_MSG_P2REPL_LIFENUM’ containing the current server life number in its data field. After receiving this message all outdated data
should be deleted, and the fresh data should be received.

• clientLifeNumber = serverLifeNumber. The listener is ready to work, no notifications and data cleaning procedures are needed.

• clientLifeNumber > serverLifeNumber. The system returns the ‘P2ERR_REPL_LIFE_NUMBER_MISMATCH’ error message.

It is also allowable to start listener without transmitting a life number. In this case, the listener will use the server life number with the
‘CG_MSG_P2REPL_LIFENUM’ notification.

1.6. Working with data schemes
Any data received or sent in the course of client program interaction with the trading system have a particular structure. Data schemes are
used to describe the structure of particular messages.

Data scheme describes a set of possible messages for the selected data channel (subscription or publishing), fields and types of these
messages and also define the rules of access to these data. A data scheme is described by the following structure:

struct cg_scheme_desc_t {
 /// Scheme type
 uint32_t scheme_type;

 /// Scheme features
 uint32_t features;

 /// Number of messages in the scheme
 size_t num_messages;

 /// Indicator of the messages description list
 struct cg_message_desc_t* messages;

 // Scheme options
 struct cg_value_pair_t* hints;

};

The only one scheme type is currently available; this type corresponds to the identifier ‘1’ — data are stored in the binary form with the 4-
byte alignment without support of optional fields.

The ‘features’ field describes available information in the scheme — this field may be used to determine whether default values were set
for fields in this scheme, whether fields or messages have descriptions, etc. This is accomplished by the ‘CG_SCHEME_BIN_*’ constants.

The ‘num_messages’ field defines the number of messages in the scheme, and the ‘messages’ field indicates the first message. Messages
represent the main object describing particular data structures and are used in all types of subscriptions and publishing; for instance, for
the Plaza-2 replication, messages describe events of data updates in tables.

Each message is described by the following structure:

struct cg_message_desc_t {
 /// indicator of the next message
 struct cg_message_desc_t* next;

 /// message block size
 size_t size;

 /// Number of fields in the message
 size_t num_fields;

 /// Indicator of field descriptions array
 struct cg_field_desc_t* fields;

Client program interface 14.04.2020

13

 /// Message identifier
 /// May be equal to 0, if the message has no identifier
 uint32_t id;

 /// Message name indicator
 /// May be NULL – in this case the message has no name
 char *name;

 /// Message description indicator
 /// May be NULL - in this case, the message has no description
 char *desc;

 /// Message options
 struct cg_value_pair_t* hints;

 /// number of message indices
 size_t num_indices;

 /// First index indicator
 struct cg_index_desc_t* indices;

 /// For internal use
 int64_t owner_id

 /// Size of alignment
 size_t align;

};

The ‘next’ field indicates the next message in the scheme or contains the 'NULL' value, that indicates the last message. Therefore, messages
are arranged in the linked list and may be accessed by the following cycle:

cg_scheme_desc_t* schemedesc; // initialized indicator of data schemes
for (cg_message_desc_t* msgdesc = schemedesc->messages;
 msgdesc; msgdesc = msgdesc->next)
{
 /// here it is possible to work with message description
 /// which is contained in msgdesc

 ...
}

The ‘size’ field of the message description structure specifies the block size in bytes, required for storing the entire message data. The
‘num_fields’ field indicates the number of fields in the message, and ‘fields’ indicates the first message field.

The ‘id, ‘name’ and ‘desc’ fields contain the message identifier along with its name and its description. The message may have no identifier,
name or description if a particular scheme does not describe these values.

The field ‘hints’ contains pointer to the structure where the field parameters are stored. These parameters may be used for automatic setting
of the program for a particular type or method of data updating:

struct cg_value_pair_t {
 /// Pointer to the next list entry
 struct cg_value_pair_t *next;
 /// Key, required
 char * key;
 /// Value, may be null
 char * value;
};

, where:

• key – hint key;

• value – hint value;

• next – pointer to the next hint;

• next = 0 – end of list.

The hints 'request' and 'reply', advising the messages to be sent and the messages to be received, now has the following parameters:

• request=1 - the value is transmitted in the field 'value';

• reply=1 - the value is transmitted in the field 'value'.

Client program interface 14.04.2020

14

Parameter 'replies' now has value 129,99,100 (transmitted in the field 'value').

The ‘num_indices’ field contains the number of indices, and the ‘indices’ field indicates the first index. The first index in the list is always
the unique primary key.

Indices are described by the following structure:

struct cg_index_desc_t {
 /// indicator of the next index
 struct cg_index_desc_t * next;

 /// number of fields in the key
 size_t num_fields;

 /// indicator of the first field description in the key
 struct cg_indexfield_desc_t* fields;

 /// key name
 char* name;

 /// key description
 char* desc;

 /// Index options
 struct cg_value_pair_t* hints;
};

The ‘next’ field indicates the next index in the scheme or contains the NULL value, indicating the last index.

The ‘num_fields’ field indicates the number of fields in the index.

The ‘fields’ field indicates the first field in the index.

The ‘name’ and ‘desc’ fields contain the index name and its description.

The ‘hints’ field contain hints for the index. For example, ‘unique’.

The index fields are described by the following structure:

struct cg_indexfield_desc_t {
 /// indicator of the next key field description
 struct cg_indexfield_desc_t* next;

 /// field indicator
 struct cg_field_desc_t* field;

 /// sorting order
 uint32_t sort_order;
};

The ‘next’ field indicates the next field in the index or contains the ‘NULL’ value, indicating the last field.

The ‘field’ field indicates the structure describing the scheme fields.

The ‘sort_order’ field specifies the sorting order: 0 - ascending, 1 - descending.

The message fields are described by the following structure:

/// Message field description
struct cg_field_desc_t {
 /// pointer to the next field
 struct cg_field_desc_t* next;

 /// Field identifier
/// Can be 0 in case there is no field id
 uint32_t id;

 /// Field name
/// Can be NULL - in this case field has no name
 char* name;

 /// Field description
/// Can be NULL - in this case field has no description
 char* desc;

Client program interface 14.04.2020

15

 /// Field type
 char* type;

 /// Value size of this field
 size_t size;

 /// Offset from the message beginning
 size_t offset;

 /// Indicator of the default field value.
 /// Indicates the buffer of the ‘size’ size which stores data in the ‘type’ format
 /// If null, then there is no default value

 void* def_value;

 /// Indicator of the list of field values
 struct cg_field_value_desc_t* values;

 /// Field options
 struct cg_value_pair_t* hints;

 /// Maximum number of fields, 1 by default
 size_t max_count;

 /// Link to description of count field
 struct cg_field_desc_t * count_field;

 /// Pointer to message description for type = 'm' fields
 struct cg_message_desc_t * type_msg;

};

The ‘next’ field indicates description of the next message field or contains ‘NULL’ in case of the last field. The ‘id’, ‘name’ and ‘desc’ fields
specify identifier, name and description of the field, respectively. In case of different message schemes, these fields may contain null values.
The ‘type’ field contains the name of the field type, which may be used to determine the operating mode of this field. The most common
field types are the following:

i1, i2, i4, i8 Integer signed values with the size of 1, 2, 4 and 8 bytes, respectively

u1, u2, u4, u8 Integer unsigned values with the size of 1, 2, 4 and 8 bytes, respectively

cNN String with the maximum length NN (ended with zero-value byte)

dMM.NN Figure in the binary-decimal format with the total number of MM digits and the NN digits after the decimal point

bNN Block with non-formatted binary data of the NN size

t Structure describing date and time

The ‘size’ field contains the field value size and the ‘offset’ field — offset of this field in bytes from the beginning of the data block. This
information provides unambiguous identification of the desired field location and size in the data block of the message.

The ‘def_value’ field contains indicator of the default value. Type and size of the value completely coincide with the type and size of the
field, therefore initialization of the field by the default value may be performed simply by copying. The ‘NULL’ value of the ‘def_value’ field
indicates absence of the default value.

The ‘values’ field indicates the first value of the allowed values list. The ‘NULL’ value of the ‘values’ field indicates that the field may take
any value from the type definition domain.

struct cg_field_value_desc_t {
 /// indicator of the next value
 struct cg_field_value_desc_t* next;

 /// value name
 char* name;

 /// value description
 char* desc;

 /// indicator of the allowed value
 void* value;

 /// for fields of the integer type (i[1-8], u[1-8]), the mask
 /// determining the range of bytes taken by the value

Client program interface 14.04.2020

16

 void* mask;
};

The ‘next’ field indicates the next value from the list of admissible field values or contains the NULL value, indicating the last value.

The ‘name’ and ‘desc’ fields contain name and description of the value.

The ‘value’ field indicates the field value; in this case, the size and type of the value coincide with the size and type of the field itself.

The ‘mask’ field is used for grouping of mutually exclusive values, in this case values with different masks may be combined.

Let’s suggest that we are dealing with subscription for receiving the Plaza-2 data stream with the following data scheme:

[dbscheme:FutTrade]
table=orders_log
table=heartbeat

[table:FutTrade:orders_log]
field=replID,i8
field=replRev,i8
field=replAct,i8
field=id_ord,i8
field=sess_id,i4

[table:FutTrade:heartbeat]
field=replID,i8
field=replRev,i8
field=replAct,i8
field=server_time,t

This format of schemes description in the form of ini-files is accepted in the Plaza-2 system.

This scheme describes two tables (two messages) with a certain set of fields in each of them. Let’s suggest that we are desired in getting
application numbers from the table ‘orders_log’ and server time synchronization events from the ‘heartbeat’ table — these values are
contained in the ‘id_ord’ field of the ‘orders_log’ message and the ‘server_time’ field of the ‘heartbeat’ message, accordingly.

There are two ways to analyze the received data — static, with application of pre-set data structures, and dynamic, with calculation of offsets
in the desired fields as of the moment of the scheme receiving.

The static approach is based on the fact that at the stage of development data schemes which will be further used are fixed for the desired
streams. After that, for the data schemes, descriptions of C language structures are generated manually or automatically, e.g. using the
‘schemetool’ tool — these descriptions correspond to formats of binary data blocks for each of the received messages (for Java or .NET
languages, a code, which analyzes binary blocks of messages is generated instead of structures). In course of operation data of the received
message are displayed to the structure corresponding to the message type, and then the necessary data processing is performed.

On the one hand, this approach allows to simplify development process; on the other hand, it fixes a certain format of data schemes which
will require another preparation of data structures or of the binary block analysis code. In case of changes in data schemes, the old structures
may be no longer displayed to the new message formats; in some cases, it may lead to hard-to-detect errors.

Important
In case of using some pre-set structures for data displaying, it is recommended to use a client scheme at stream initialization.
Once the received data scheme has changed, the structures should be regenerated anew.

Pre-set data structures or the binary block analysis code may be generated with application of the ‘schemetool’ utility.

It may look like the following:

/// Description of structures generated with
/// the ‘schemetool’ utility

#pragma pack(push, 4)
/// Scheme "FutTrade" description

 struct orders_log
 {
 signed long long replID;
 signed long long replRev;
 signed long long replAct;
 signed long long id_ord;
 signed int sess_id;

Client program interface 14.04.2020

17

 };
 const int orders_log_index = 0;

 struct heartbeat
 {
 signed long long replID;
 signed long long replRev;
 signed long long replAct;
 struct cg_time_t server_time;

 };
 const int heartbeat_index = 1;

#pragma pack(pop)

/// in the subscription handler

case CG_MSG_STREAM_DATA:
{
 cg_msg_streamdata_t* replmsg = (cg_msg_streamdata_t*)msg;
 if (replmsg->msg_index == orders_log_index)
 {
 orders_log* ordlog = (orders_log *)replmsg->data;
 printf ("Order ID = %lld\n", ordlog->id_ord);
 }
 else
 if (replmsg->msg_index == heartbeat_index)
 {
 heartbeat* hb = (heartbeat *)replmsg->data;
 printf ("Server time = %d:%d:%d.%d\n",
 hb->server_time.hour, hb->server_time.min,
 hb->server_time.sec, hb->server_time.ms);
 }
}

The dynamic approach suggests an absence of a clearly fixed data scheme, on the contrary — every time a data scheme is generated
from the scheme source (for instance, from the replication server), and the user code analyzes it and performs search of desired messages
and fields in these messages.

This approach enables to create a more universal system which will be able to overcome non-critical changes in data schemes; on the
other hand, dynamic analysis of the scheme is more complicated in implementation.

The first step of this approach is to prepare information about desired fields — it is necessary to analyze the applied data stream scheme
and to record numbers of desired messages and offsets of desired fields:

/// variables which will contain information
/// required for analysis of received data
size_t index_orders_log; /// index of the ‘orders_log’ message in the scheme
size_t offset_id_ord; /// offset of the ‘id_ord’ field in the block

size_t index_hearbeart; /// index of the ‘heartbeat’ message in the scheme
size_t offset_server_time; /// offset of the ‘server_time’ field in the block

This information is sufficient to identify the message type and to find the necessary field in the binary block at the moment of data receiving.
These fields are filled-in in the following way:

cg_scheme_desc_t* scheme; /// initialized description of the data scheme

size_t msgidx = 0;
for (cg_message_desc_t* msgdesc = schemedesc->messages;
 msgdesc; msgdesc = msgdesc->next, msgidx ++)
{
 size_t fieldindex = 0;
 if (strcmp(msgdesc->name, "orders_log") == 0)
 {
 index_orders_log = msgidx;
 for (cg_field_desc_t* fielddesc = msgdesc->fields;
 fielddesc; fielddesc = fielddesc->next, fieldidx ++)
 if (strcmp(fielddesc->name, "id_ord") == 0 &&
 strcmp(fielddesc->type, "i8") == 0)
 offset_id_ord = fieldidx;
 }

Client program interface 14.04.2020

18

 if (strcmp(msgdesc->name, "heartbeat") == 0)
 {
 index_heartbeat = msgidx;
 for (cg_field_desc_t* fielddesc = msgdesc->fields;
 fielddesc; fielddesc = fielddesc->next, fieldidx ++)
 if (strcmp(fielddesc->name, "server_time") == 0 &&
 strcmp(fielddesc->type, "t") == 0)
 offset_server_time = fieldidx;
 }
}

The specified code is featured by a consistent search of all messages in the scheme and search of necessary fields for desired messages.
This is accompanied by checking of field types for compliance with expectations.

The received data are processed in the following way:

/// in the subscription handler

case CG_MSG_STREAM_DATA:
{
 cg_msg_streamdata_t* replmsg = (cg_msg_streamdata_t*)msg;

 // coercion to char* to be able to add offset in bytes correctly
 char* data = (char*)replmsg->data;
 if (replmsg->msg_index == index_orders_log)
 {
 int64_t id_ord = *((int64_t*)(data + offset_id_ord));
 printf ("Order ID = %lld\n", id_ord);
 }
 else
 if (replmsg->msg_index == index_heartbeat)
 {
 cg_time_t *srvtime = (cg_time_t*)(data + offset_server_time);
 printf ("Server time = %d:%d:%d.%d\n",
 srvtime->hour, srvtime->min, srvtime->sec, srvtime->ms);
 }
}

This example will display the application identifier upon delivery of data on changes in the application status and also the server time at
the moment of the corresponding message delivery.

This example demonstrates the following useful practices for code generation:

• Monitoring of data types during analysis of the scheme — provides correct diagnosis of errors in case of changes in the schemes

• Usage of numeric message identifiers instead of strings — has positive impact on capacity; thus, instead of a more expensive operation
of strings comparison, it is possible to compare two numbers

• No data copying — it is not necessary to address each field by calling a special function; data are available directly in the message buffer

• Maintenance of data schemes evolution — code, which analyzes the scheme upon opening of the stream will be able to work with different
data schemes, with no necessity to change hardwired identifiers and to perform recompilation.

1.6.1. Data scheme usage policy
Typically, data schemes change following the SPECTRA trading system updates. Some new streams may be added into schemes, and
some new fields may be added into already existing streams as well. These updated schemes will also be included into Cgate distribution kit,
stored in folders in accordance with the SPECTRA trading system version, i.e. SPECTRA53, SPECTRA56, etc. These folders (SPECTRA53,
SPECTRA56, etc.) will not be deleted upon installation in order to avoid a client to reconfigure software on their side.

There are two methods of working with messages:

• Dynamic method, when, upon receiving message 'CG_MSG_OPEN', a client receives data scheme from object 'lsn'. In the data scheme
received, a client then locates the fields their require, bearing in memory the fields' offset in bytes from the beginning of the message.
Later, upon receiving message 'CG_MSG_STREAM_DATA', the client can obtain values of the fields they require according to that offset.

• Static method, when a client uses 'schemetool', or any other utility of such a type, creates a structure, or a class which will grant access
to the message fields. Later, upon receiving message 'CG_MSG_STREAM_DATA', the client can obtain values of the fields they require
using the appropriate methods, or class/structure fields.

Also, there are four methods a client can specify data scheme:

• using an INI file;

• using an embedded string like:

Client program interface 14.04.2020

19

|STRING|base64encodedscheme

• using a server-side data scheme;

• using a data scheme stored in data scheme repository (mq protocol only!)

Below, there is a list of data scheme usage methods, including the pros and cons for each method:

Method of specify-
ing data scheme

Method of working
with messages

Pros Cons Comment Summary

Dynamic There is no need
to recompile source
code upon data
scheme update (if all
required fields are
available).

The only source
to know if a
field has been al-
ready removed from
SPECTRA P2Gate
schemes is runtime.

It is recommended to
check for software up-
date availability upon
SPECTRA UAT serv-
er software update.

Recommended to
use.

INI file

Static Simple code, there is
no need to remem-
ber the fields' offset in
bytes from the begin-
ning of the message.

Due to structure-code
inconsistency, there
is always a risk to ob-
tain some invalid da-
ta into client-side soft-
ware.

Not recommended to
use.

Dynamic There is no need
to recompile source
code upon data
scheme update (if all
required fields are
available).

The only source
to know if a
field has been al-
ready removed from
SPECTRA P2Gate
schemes is runtime.

Data scheme cannot
change. It is rec-
ommended to check
for software up-
date availability upon
SPECTRA UAT serv-
er software update.

Recommended to
use.

Embedded string

Static Simple code, there is
no need to remem-
ber the fields' offset in
bytes from the begin-
ning of the message.

The only source
to know if a
field has been al-
ready removed from
SPECTRA P2Gate
schemes is runtime.

Data scheme cannot
change. It is rec-
ommended to check
for software up-
date availability upon
SPECTRA UAT serv-
er software update.

Recommended to
use.

Dynamic There is no need
to recompile source
code upon data
scheme update (if all
required fields are
available).

The only source
to know if a
field has been al-
ready removed from
SPECTRA P2Gate
schemes is runtime.

There is always
a high probability
of server-side data
scheme modification.

Recommended to
use.

Server-side scheme

Static Due to structure-code
inconsistency, there
is always a risk to ob-
tain some invalid da-
ta into client-side soft-
ware.

There is always
a high probability
of server-side data
scheme modification.

Not recommended to
use.

Dynamic There is no need
to recompile source
code upon data
scheme update (if all
required fields are
available).

The only source
to know if a
field has been al-
ready removed from
SPECTRA P2Gate
schemes is runtime.

There is always
a high probability
of server-side data
scheme modification.

Recommended to
use.

Data scheme reposi-
tory (mq protocol on-
ly!)

Static Due to structure-code
inconsistency, there
is always a risk to ob-
tain some invalid da-
ta into client-side soft-
ware.

There is always
a high probability
of server-side data
scheme modification.

Not recommended to
use.

Note
How to obtain a data scheme from string:

1. Transmit the following parameter using 'schemetool':

-Dgen-scheme-string=1

Client program interface 14.04.2020

20

(for SPECTRA v. 5.6, the parameter is on by default);

2. Generate url lsn:

p2repl://STREAM_NAME;scheme=SCHEME_STRING_FROM_SCHEMETOOL

How to obtain a server-side data scheme:

1. SImply do not specify 'scheme' to use the server-side data scheme:

p2repl://STREAM_NAME;

How to obtain a data scheme from repository (mq protocol only!):

1. SImply do not specify 'scheme' to obtain the last available data scheme from repository:

p2mq://FORTS_SRV;category=FORTS_MSG

Once you need to obtain any specific data scheme version, you should specify that via parameter 'version', i.e.:

p2mq://FORTS_SRV;category=FORTS_MSG;version=5.8

1.7. Sending transactions and receiving replies
Sending FORTS transactions and receiving replies on their running is performed via the ‘Publisher’ and ‘Listener’ objects. The created
‘Publisher’ object is tied to the connection by calling the ‘cg_pub_new’ function, e.g. in the following way:

result = cg_pub_new(conn,
 "p2mq://FORTS_SRV;category=FORTS_MSG;"
 "name=PUB;scheme=|FILE|ini/forts_scheme_messages.ini|message ",
 &pub);

In this example, ‘pub’ is initialized by the ‘Publisher’ object which is set for sending of FORTS transactions according to the scheme, which is
stored in the ‘ini’ sub-directory with the ‘forts_scheme_messages.ini’ file name and the ‘message’ scheme name via the ‘conn’ connection.
‘Publisher’ was assigned with the ‘PUB’ name which will be referenced by ‘Listener’.

Upon successful calling of the ‘cg_pub_new’ function, the object turns into initialized state but still remains inactive. Further work with the
publisher is possible only upon calling of the ‘cg_pub_open’ function:

result = cg_pub_open(pub, 0);

Opening parameters for the ‘Publisher’ object are not provided at the moment; therefore, a null pointer is transferred as the second pa-
rameter.

When the publisher has been created and opened, you may create and send transactions. To create a transaction, you may use the
‘cg_pub_msgnew’ function.

result = cg_pub_msgnew(pub, CG_KEY_NAME, “FutAddOrder”, &msgptr);

In this case, a message will be created for placing the FORTS order (‘FutAddOrder’ transaction) by name, and its indicator will be recorded
into the ‘msgptr’ variable. The ‘cg_pub_msgnew’ function may also be used to create messages by the number in the active scheme and
by the identifier.

A message is represented as a pointer to the ‘cg_msg_data_t’ structure:

struct cg_msg_data_t
{
 uint32_t type; // Message type = CG_MSG_P2REPL_DATA
 size_t data_size; // Data size
 void* data; // Data indicator

 size_t msg_index; // Message number in the active scheme
 uint32_t msg_id; // Unique message identifier
 const char* msg_name; // Message name in the scheme

 uint32_t user_id; // User’s number of the message
 const char* addr; // Destination address
 struct cg_msg_data_t* ref_msg; // Reference message (not used now)
};

The ‘data’ field of the structure indicates the memory buffer of corresponding capacity, which should be filled according to the active scheme.
The simplest way to do this is to bring the pointer to the correct structure. For instance, in the following way:

ord = (struct AddOrder*)msgptr->data;
strcpy(ord->broker_code, "HB00");

Client program interface 14.04.2020

21

Description of the structure from the scheme may be created via the ‘schemetool’ utility.

When the message has been created and filled in, it must be sent out by the ‘cg_pub_post’ function:

 result = cg_pub_post(pub, msgptr, CG_PUB_NEEDREPLY);

The 'CG_PUB_NEEDREPLY' flag means that we want to receive replies to the corresponding ‘lsnreply’ listener.

When the message has been sent, it may be destroyed by means of the ‘cg_pub_msgfree’ function:

result = cg_pub_msgfree(pub, msgptr);

If you send more than one requests of the same type, it may be more effective to use the created message again.

The publisher is closed by calling the ‘cg_pub_close’ function:

result = cg_pub_close(pub);

This is accompanied by disconnection of the publisher from the ‘connection’ object; the object itself remains in the initialized state and may
be re-opened. The object is destroyed by calling the ‘cg_pub_destroy’ function:

result = cg_pub_destroy(pub);

After that, the ‘pub’ object is released, and further work with this object is impossible.

The listener for receiving replies to commands is created in the following way:

result = cg_lsn_new(conn, “p2mqreply://;ref=PUB”, replyCB, user_data, &lsnreply);

This call initializes the ‘lsnreply’ variable with a special listener object in order to receive replies to the messages, which were sent by the
publisher. Communication between the listener and the publisher is accomplished by name; in this case, this name is ‘PUB’, the ‘ref=PUB’
parameter of the initialization string creates this communication. One listener may be referenced to one publisher. Names of corresponding
pairs should be unique. Messages containing replies to transactions and also information on other events of the publisher will be delivered
to the ‘replyCB’ function. Life cycle of this ‘Listener’ object does not differ somehow from the life cycle of the replication listener, which is
reviewed in the corresponding section except for the fact that ‘replyCB’ does not receive messages of the replication system but receives
simple single 'MQ' messages, described by the ‘cg_msg_data_t’ structure. The ‘cg_msg_data_t’ structure is referenced to the data described
by the scheme of the corresponding publisher, and there is also the ‘CG_MSG_P2MQ_TIMEOUT’ notification, if the time interval for waiting
for the message reply was exceeded. When connection closes, all unreplied 'mq' requests will receive the 'CG_MSG_P2MQ_TIMEOUT'
notification messages in reply. When there is an error returns from user's callback, the listener closes.

The 'p2mqreply' listener must be created after creation of the 'mq' publisher. Otherwise, there will be an invalid handle to the 'ref=PUB'
object. Order of destruction of these linked object is not important.

The user’s reply handler may look like:

CG_RESULT ClientMessageCallback(cg_conn_t* conn, cg_listener_t* listener, struct cg_msg_t* msg, void* data)
{
 switch (msg->type)
 {
 case CG_MSG_DATA:
 {
 uint32_t* data = msg->data;
 printf("Client received reply [id:%d, data: %d, user-id: %d, name: %s]\n",
 ((struct cg_msg_data_t*)msg)->msg_id,
 ((uint32_t)msg->data),
 ((struct cg_msg_data_t*)msg)->user_id,
 ((struct cg_msg_data_t*)msg)->msg_name);

 {
 struct scheme_desc_t* scheme;
 size_t bufSize;

 if (cg_lsn_getscheme(listener, &scheme) != CG_ERR_OK)
 scheme = 0;

 if (cg_msg_dump(msg, scheme, 0, &bufSize) == CG_ERR_BUFFERTOOSMALL)
 {
 char* buffer = malloc(bufSize+1);

 bufSize++;
 if (cg_msg_dump(msg, scheme, buffer, &bufSize) == CG_ERR_OK)
 printf("client dump: %s\n", buffer);
 free(buffer);

 }
 }

Client program interface 14.04.2020

22

 break;
 }
 case CG_MSG_P2MQ_TIMEOUT:
 {
 printf("Client reply TIMEOUT\n");
 break;
 }
 default:
 printf("Message 0x%X\n", msg->type);
 }
 return CG_ERR_OK;
}

This user’s handler either outputs the dump of messages by means of the auxiliary ‘cg_msg_dump’ function or, in case of the reply period
exceeding, monitors this situation and displays the corresponding messages on the screen.

In order to link the sent messages and their replies, it is necessary to use the ‘user_id’ field of the ‘cg_msg_data_t’ structure: setting ‘user_id’
on the sent message provides receiving of the reply message with the same ‘user_id’.

1.8. How to work with p2sys
When the p2sys connection is being established, the listener receives 2 messages of the 'CG_MSG_DATA' type:

• ConnectionConnected (msgid = 3). The data field contains the 'state' variable of the 'int32' type, with the operation status 2;

• RouterDisconnected (msgid = 2). The data field also contains the 'state' variable of the 'int32' type, with the operation status 1;

In case of successful connection user will be able to send an outcoming authentication request. To do this, the user should create the 'Router-
Login (msgid = 1)' message of the 'CG_MSG_DATA' type. The data field of the message must contain the line "USERNAME=%user_name
%;PASSWORD=%password%".

If the login and password pair is validated, the listener receives the 'RouterConnected (msgid = 1)' message containing user login as
line. If authentication declined, the listener receives the 'RouterConnected (msgid = 5)' message containing operation status value 1 in
the data field.

To disconnect from Plaza-II, you should send the 'RouterLogout (msgid = 2)' message. The data field value in this message is ignored.
The system sends back the RouterDisconnected notification with the status value 1.

All objects should be closed down in the standard way, one by one: first publisher, then listener, and then connection.

1.9. Password change protocol objects
The protocol p2mqpwd is presented to provide clients with a user password change solution. The protocol itself provides secure data
transfer, when both password and login are transferred encrypted. The protocol's API consists of publisher and listener.

1.9.1. Publisher p2mqpwd
Publisher 'p2mqpwd' allows to send the password change command into the trading system. Before using the publisher, it is necessary
to add 'mqpwd' subsystem into the environment:

result = cg_env_open("subsystems=mq,replclient,mqpwd;ini=ini/settings.ini;key=72395823576;");

The publisher uses standard connections, i.e. 'p2tcp', or 'p2lrpcq':

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=pwd_changer", &conn);
result = cg_conn_open(conn, 0);

The publisher scheme is fixed, and can be found at <installation folder>\SpectraCGate\SDK\scheme\SPEC-
TRAXX\change_password_messages.ini.

The scheme can be specified either by string, or by file path. All other publisher's commands (such as message type and service name)
are similar to that of the standard publisher 'p2mq' (the one using for sending commands into the trading system).

publisher_t* pub = 0;
result = pub_new(conn,
"p2mqpwd://FORTS_SRV;name=pwd_changer;category=FORTS_MSG;
scheme=|FILE|C:\Moscow Exchange\SpectraCGate\SDK\scheme\SPECTRAXX\change_password_messages.ini|
change_password_message",
&pub);
result = pub_open(pub, 0);

The password change message is named 'ChangePassword', and can be created by the standard method using the publisher 'mqpwd':

cg_msg_data* msg;

Client program interface 14.04.2020

23

result = cg_pub_msgnew(pub, CG_KEY_NAME, “ChangePassword", &msg);

You should fill in the 'ChangePassword' message fields (both current and new passwords are required) and send the message into the
trading system in the same way you send all other commands:

result = cg_pub_post(pub, msg, CG_PUB_NEEDREPLY);

1.9.2. Listener p2mqpwdreply
Listener 'mqpwd' allows to receive replies from the trading system. To create the listener, it is necessary to specify protocol 'p2mqpwd':

listener_t* lsn;
result = cg_lsn_new(conn, "p2mqpwdreply://;ref=pwd_changer;", &clientMessageCallback, NULL, &lsn);
result = cg_lsn_open(lsn, "");

In every other way the listener 'p2mqpwdreply' can be used similar to the standard listener 'p2mqreply'.

The reply from the trading system may contain either confirmation code, or a error code along with the error details. A error may occur due
to some erroneous user data, or due to some system level errors. Once any error occurs, the user password will not be changed.

The confirmation reply indicates that the user password was changed in the trading system; note that authentication of the current router
connection will remain the same. To authenticate the router using the new password you should first edit the router INI file in a proper way,
and then restart the router. Another way is to use protocol 'p2sys' for logging in via CGate.

Client program interface 14.04.2020

24

2. API description
2.1. General agreements

Program interface of the library is structured with allowance for a number of agreements:

• Each API function returns an error code

• Output parameters are set as indicators of variables, which should accept the value returned by the function and are located in the end
of the parameters list

• Functions have prefixes, which usually consist of two parts: the first part "cg_" denotes the reference to the Client Gate library, the second
part identifies the class of objects used with the respective function

○ env_ — functions that work with the general system environment

○ conn_ — functions that work with the connection

○ lsn_ — functions that work with the listeners

○ pub_ — functions that work with the publishers

○ log_ — functions that work with the operating log
, also, there are certain functions which only have the ‘cg_’ prefix — these are the auxiliary functions and service functions, which do
not belong to any particular group.

• Functions of the ‘lsn_new’, ‘pub_new’, etc. types create and initialize objects, which should be than released by corresponding calls of
‘lsn_destroy’, ‘pub_destroy’, etc. If objects are not destroyed explicitly, it will lead to memory leaks.

2.2. Life cycle of objects
The objects accessed through the library have the life cycle described by the following scheme:

Throughout their life cycle, objects exist in the following states:

• CG_STATE_CLOSED

Closed state. An object is created in this state (upon calling ‘cg_OBJ_new’) and passes to it upon calling ‘cg_OBJ_close’. The object can
switch to the 'CG_STATE_CLOSED' status in case of an error.

• CG_STATE_OPENING

This is an intermediate state between the closed and the active states. An object exists in this state upon ‘calling cg_OBJ_open’ and up
to passing to the ‘CG_STATE_ACTIVE’ state or, in case of error in the object opening, to the ‘CG_STATE_ERROR’ state.

• CG_STATE_ACTIVE

Client program interface 14.04.2020

25

This is the active state — the main operating state of the object. In this state, an object may be dealt with — processing con-
nection events, sending and receiving messages. An object passes to this state upon completion of the opening process from the
state ‘CG_STATE_OPENING’. An object may pass from this state either to the state ‘CG_STATE_CLOSED’ upon calling of the func-
tion ‘cg_OBJ_close’, or to the state ‘CG_STATE_ERROR’ in case of error. 'Connection' can switch from 'CG_STATE_ACTIVE' into
'CG_STATE_OPENING' once connection between its own router and an upper level one is lost.

Please note that when the 'connection' object closes, all the objects (listeners and publishers) linked with this connection will close too.

• CG_STATE_ERROR

This is the error state. An object turns out to be in this state if an error occurs in the course of its opening or operation. An object may
be passed from this state to the closed state by calling ‘cg_OBJ_close’ or destroyed by calling ‘cg_OBJ_destroy’, if further work with
the object is not required.

This scheme of states is used for the following objects:

• Connections — cg_conn_t

• Listeners — cg_listener_t

• Publishers — cg_publisher_t

2.3. Usage in the multithreading environment
The ‘CGate’ library may be used in the multithreading environment but it is not thread-safe. It means that in order to provide correct work
with the multithreading library, it is necessary to follow the certain rules:

• Work with the ‘Connection’ object should be performed only from one thread at any time.

In this respect, the correct thing to do is to create a connection from one thread and to work with it from another thread. In this case, it is
essential that several threads wouldn’t perform actions with the connection at the same time. If it is necessary to separate the connection
between several threads at the same time, it is required to use primitive elements of synchronization from the operation system to provide
synchronization of access to the ‘Connection’ object.

• Operations with the ‘Listener’ and ‘Publisher’ objects should be performed only from one thread at any time, in the same way as from
the ‘Connection’ object.

• The 'listener' object is linked to a particular connection (the one defined at the moment of their creation); to work with it, you should use
the same thread as that of the connection object. The 'publisher' object is also linked to a particular connection (the one defined at the
moment of their creation); to work with it, you should use another thread.

2.4. Start-up and shutdown of the environment
To start work with the library, it is required to perform initialization of environment. Initialization is performed via the ‘env_open’ function:

CG_RESULT cg_env_open(const char* settings);

The function accepts string that describes parameters of the system. The string is a set of ‘KEY=VALUE’ pairs separated by a semicolon.
The following parameters are available:

ini Initialization file path. This file describes configuration of the library — journaling mode, etc.

Parameter setting may look like: "ini=conf/settings.ini", in this case the library will load configuration from the file conf/
settings.ini

subsystems p2 subsystems to initialize, separated by comma.

mq - mq-protocol;

replclient - p2 replica client;

mqpwd - password change protocol.

log Logging mode.

log = std - output cgate logs into stdout;

log = null - output into /dev/null;

log = p2;

log = p2:p2syslog - where p2syslog name of the section containing logging settings.

minloglevel Minimal depth of logging ('debug' by default).

Available values: trace, debug, info, notice, warning, error, critical.

Client program interface 14.04.2020

26

key Client program identifier, which must be specified for work with the library. The key is used to get access to the Plaza-2
system — for the test system there is a set of predefined keys; for production — the key is generated upon passing the
program certification procedure.

Failure of initialization may indicate a configuration error: the configuration file may be missed or installation integrity may be corrupted,
etc. In case of this failure, there is no use trying to perform re-initialization of libraries; instead of this, you should shutdown your program
and check the configuration.

If initialization fails or was not performed, it is not possible to work with the other functions of the library.

Initialization code of the system may look like:

result = cg_env_open("ini=ini/settings.ini;key=72395823576");
if (result != CG_ERR_OK)
{
 // display an error message and exit the program
 ...
 return;
}

Which means successful initialization of the library with the ‘configuration ini/settings.ini' file and the application key '72395823576'. The 'ini/
settings.ini' file should be accessible via the specified path relatively to the current work directory at the moment of program start.

Deinitialization is performed before exiting the program by calling the 'env_close' function:

CG_RESULT cg_env_close(void);

The function performs deinitialization of sub-systems and closure of the operating log. This function must be always called in the end of
program operation.

2.4.1. p2 log settings

Log settings are specified in section [p2syslog] of an appropriate INI file. The following settings can be specified:

• logfileperday — log file generation schedule:

○ 0 — a new log file generates every time the application module starts. If there any previously generated log file already exists, it will be
renamed by adding 1 as a part of its name/extension (depending on value of the setting 'logfilenametype', 1 adds either before the file
extension, or after the file extension). With each new log file created, the previous log files' names will have their numbers increased
by 1. The total number of log files stored can be specified via the setting 'logfiledepth'.

○ 1 — a new log file generates once a day, if there was at least one log record added into log that day. If there any previously generated
log file already exists, new records will be added at the end of the existing log file. On adding the first record, the log file name will be
changed by adding the file creation data in YYYYMMDD format. Depending on value of the setting 'logfilenametype', the file creation
date adds either before the file extension, or after the file extension. The total number of log files stored can be specified via the setting
'logfiledepth'.

○ 2 (default) — a new log file generates once an hour. If there any previously generated log file already exists, new records will be
added at the end of the existing log file. On adding the first record, the log file name will be changed by adding the file creation date in
YYYYMMDDHH format. Depending on value of the setting 'logfilenametype', the file creation date adds either before the file extension,
or after the file extension. Starting every hour, a new LOG file creates, with the appropriate creation date. The total number of log files
stored can be specified via the setting 'logfiledepth'.

• logfile — log file base name. If the parameter is missing, or empty base name was specified, then the executable module file name
without extension will be used instead. The base name consists of the left part of the log file name, and includes either full or relative
pathname. In case of a relative pathname, the full pathname will be generated according to the current folder on adding the first record
into the log file. If logfile=nul, no log file will be created.

• logfilenametype — log file creation method:

○ 0 — additional file name parameters (number/file creation date) will be added after the file extension.

○ 1 (default) — additional file name parameters (number/file creation date) will be added before the file extension.

• logfiledepth — total number of log files stored, including the current one. The value specified must exceed 0. The default value is 168.

• logtime — time output format. There can be either 3 digits or 6 digits displayed, depending on OS version. Now the setting is available
for WIndows OS only (the appropriate API function is available for Win8+/Win Server 2012). The following values are available:

○ 0 (default if logfileperday=0) — time output disabled.

○ 1 — time value up to seconds displayed in separate string, before the appropriate message (not earlier than 1 second after the previous
message). Output format: YYYY-MM-DD HH:MM:SS.

○ 2 — time value up to milliseconds, displayed at the beginning of every message string. Output format: YYYY-MM-DD HH:MM:SS.mmm.

Client program interface 14.04.2020

27

○ 3 (default if logfileperday=1 or logfileperday=2) — time value up to milliseconds (with date missing), displayed at the beginning of every
message string. Output format: HH:MM:SS.mmm. Applicable for logfileperday=1 or logfileperday=2 modes only.

○ 4 — number of microseconds passed since P2SysLog library has initialized. Displayed at the beginning of every message string.

Warning
Attention! Now this value is equal to that of #5 below!

○ 5 — number of microseconds passed since computer has started. Displayed at the beginning of every message string.

○ 6 — time value displayed as combined mode of #3 + #5, i.e., for example: 13:13:58.627|00010475078718. Applicable for logfileperday=1
or logfileperday=2 modes only.

• logtoconsole — allows to copy all log messages to console:

○ 0 — disable copying.

○ 1 (default) — enable copying.

• traceini — specifies a file name to add trace records. If there is no traceini parameter, then all trace records are added into the main INI
file. Having a separate file for trace records allows to set the main INI file as read-only (as trace records cannot be added into a read-
only file, we have to got a separate file for them). If traceini=nul, no separate file for trace records will be created; instead, trace records
will be added into log file (if only trace records are not put via P2TRACE*_0 macros).

• addthreadid — adds stream information (ThreadID) to each log file string. The setting is applicable for multi-thread applications.

○ 0 — disabled.

○ 1 (default) — enabled.

• logfilecache — memory buffer size (in bytes) of the log caching processes. Allowable value range is 64-32767, any other value will
return a error message. The default value is determined by the OS installed. The setting allows to manage parameters of caching log file
recording operations in memory. Please note that the more buffer size is specified, the later the log file begins to fill, so that a situation
may occur when the log file remains empty within a period of time. In asynchronous mode, the file buffer will be emptied if there is no
call received from logging subsystem within 300 milliseconds. In asynchronous mode, if logfilecache=0, a warning message is displayed,
and the default value is used instead.

• logasync — allows to establish a dedicated thread for logging:

○ 1 (default) — dedicated thread for logging.

○ 0 — common thread for logging.

• logthread_affinity — processor mask for asynchronous log thread. The mask is a 64-bit number represented as decimal number, and
used only in asynchronous logging mode (logasync=1).

2.5. Connection
The ‘Connection’ object provides interaction with the Plaza-2 router for sending and receiving of messages. Any amount of these objects
may be created at any time during program operation with initialized environment; nevertheless, it is recommended to create connections
at the start of program and to stop them just before exiting.

2.5.1. cg_conn_new
Connection is created by calling:

CG_RESULTcg_conn_new(const char* settings, cg_conn_t** connptr);

Parameters are represented by the connection initialization string and by a pointer, which includes the pointer to
the created connection. The connection creation string is set in the URL format in the following way: "TYPE://
HOST:PORT;param1=value1;param2=value;...;paramN=valueN", where

TYPE Connection type. Three connection types are currently supported:

p2tcp Connection to the Plaza-2 router via the TCP/IP protocol. It is slower, better for debugging, and may be linked with a
router that is installed on third computer.

p2lrpcq Connection to the Plaza-2 router via shared memory. It is faster, better for production, works only with a single computer.

p2sys A special connection type, which allows to manage router.

Attention! In case of 'p2lrpcq', connection must always close correctly. Otherwise, the connection will not be able to deinitialize in
router, so that you will not be able to reestablish connection to the router without restarting it.

Client program interface 14.04.2020

28

HOST Destination address of connection. In case of connection of the ‘p2tcp’ type — this is the address of the computer, where the desired
P2MQRouter process was started, in case of ‘p2lrpcq’ — the address is 127.0.0.1.

PORT Number of the port which is used to create connection. It should be specified for both ‘p2tcp’ and ‘p2lrpcq’; in the latter case, the
port will be used as a control channel for connection creation via shared memory.

Allowed parameters for adjustment of the ‘p2tcp’ and ‘p2lrpcq’ connections:

app_name Plaza-2 application name. Within one Plaza-2 router, each connection with the router should have a unique name. This
identifier is used for routing of messages to the corresponding handlers.

local_pass Password for connection to the Plaza-2 router, if the router is configured to verify the connections to be opened. Note
that the use of 'local_pass' is mandatory when connecting to a remote router.

timeout Time in milliseconds spent on waiting for connection creation with the router in the process of calling ‘conn_open(...)’.
If this time exceeded, calling ‘conn_open(...)’ returns an error.

local_timeout Time in milliseconds spent on waiting for reply from the Plaza-2 router, when the ‘p2lrpcq’ connection is used.

name object name in cgate;

lrpcq_buf lrpcq buffer size (in bytes).

Example of function call:

const char* conn_str = "p2lrpcq://127.0.0.1:4001;app_name=myapp";
cg_conn_t* conn;

result = cg_conn_new(conn_str, *conn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize connection: 0x%X\n", result);
 return;
}

Example of connection string:

p2lrpcq://127.0.0.1:4001;app_name=example;timeout=2000;local_timeout=500;lrpcq_buf=0;name=p2lrpcq_example;
p2tcp://192.168.1.1:4003;app_name=example2;timeout=2000;local_pass=123;name=p2tcp_example;
p2sys://127.0.0.1:4001;app_name=example3;timeout=2000;name=p2sys_example;

Returning values:

CG_ERR_OK Successful execution.

CG_ERR_INVALIDARGUMENTInvalid arguments to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more information
see log files.

2.5.2. cg_conn_open
Connection is opened by the call:

CG_RESULT cg_conn_open(cg_conn_t* conn, const char* settings);

Parameters are represented by the connection object indicator and the connection opening string. The connection opening string is not
currently used and should be either empty or ‘NULL’.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to open the connection, when it was impossible to open it, since it is either already
active or is in the error state.

CG_ERR_UNSUPPORTED The error indicates an issue with checking client certificate. Adds "Certificate check failed" record to the log.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see the analysis of the library logs.

Important
If the function returns the ‘CG_ERR_OK’ value, it doesn’t mean that the connection was successfully opened — this may be deter-
mined only on the basis of the connection status change (‘cg_conn_getstate’). Successful running of this function means that the

Client program interface 14.04.2020

29

connection opening process was successfully initiated, and some time later the connection may pass to the ‘CG_STATE_ACTIVE’
state in case of a succeeded connection opening, or to the ‘CG_STATE_ERROR’ state in case of a failure in connection opening.

Transferred values:

settings Not used, reserved for future needs.

Example of function call:

cg_conn_t* conn; // indicator of the object initialized by calling ‘conn_new’

result = cg_conn_open(conn, NULL);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to open connection: 0x%X\n", result);
 // Try to reopen the connection
}

2.5.3. cg_conn_close
Connection is closed by calling:

CG_RESULT cg_conn_close(cg_conn_t* conn);

The parameter is represented by the connection object pointer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to close the connection when it has been already closed.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

After the closure of the connection, it may be reopened by calling cg_conn_open.

Example of function call:

cg_conn_t* conn; // indicator of the object initialized by calling ‘conn_new’

result = cg_conn_close(conn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to close connection: 0x%X\n", result);
 return;
}

2.5.4. cg_conn_destroy
Connection is destroyed by calling:

CG_RESULT cg_conn_destroy(cg_conn_t* conn);

The parameter is represented by the connection object pointer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to destroy the connection, when it has not been correctly closed.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This call destroys the object which is indicated by the ‘conn’ parameter and releases all associated resources. After the function was called,
the object cannot be used anymore. This function must be called for every object created by calling cg_conn_new, regardless of the fact if
the tasks (opening, data acquisition, sending messages) were performed with this object or not. When calling 'cg_conn_destroy' for active
'conn', the connection closes and then destroys.

Client program interface 14.04.2020

30

Example of function call:

cg_conn_t* conn; // of the object which was closed by the calling conn_close

result = cg_conn_destroy(conn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to destroy connection: 0x%X\n", result);
 return;
}

2.5.5. cg_conn_process
Messages of the connection are processed by calling:

CG_RESULT cg_conn_process(cg_conn_t* conn, uint32_t timeout, void* reserved);

Parameters are represented by the connection object indicator and the events timeout. The last parameter (‘reserved’) is not currently used
and must be equal to ‘NULL’.

Return values:

CG_ERR_OK Successful running.

CG_ERR_TIMEOUT No events of the system were processed in the specified time period

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling performs iteration of work with the connection which includes examination of the queue of incoming messages, analysis of
delivered data, calling of user-defined callback functions. This function must be called from the user code with the appropriate frequency
corresponding to the maximum desired rate of data acquisition.

Important
User-defined callback functions for listeners linked to this connection will be called in the course of this function operation from
the same running thread.

If the value of the ‘timeout’ parameter is not equal to 0, the calling will be blocked for ‘timeout’ milliseconds while waiting for events. If at
the moment of the function calling the queue of incoming messages is not empty, the function will immediately proceed with processing
of incoming messages. If the function is not called within three replication pings (3*repl_ping ('repl_ping' default value is 10 seconds)), the
listeners and connections close due to timeout.

Example of function calling:

cg_conn_t* conn; // indicator of the active connection

// analysis of incoming messages in the cycle, but no more than 100 per iteration
for (int callidx = 0; callidx < 100; ++ callidx)
{
 result = cg_conn_process(conn, 0, NULL);

 if (result == CG_ERR_TIMEOUT) // no messages
 break; // proceed with further logic of program operation
 else
 if (result != CG_ERR_OK)
 {
 // failure of the attempt to process the connection
 // display the message and close the connection
 fprintf(stderr, "Failed to process connection: 0x%X\n", result);
 result = cg_conn_close(conn); //
 if (result != CG_ERR_OK)
 {
 // failure to close the connection, exit the program
 fprintf(stderr, "Failed to close connection: 0x%X\n", result);
 return;
 }
 break;
 }
}

Client program interface 14.04.2020

31

2.5.6. cg_conn_getstate
Connection status is received by calling:

CG_RESULT cg_conn_getstate(cg_connection_t* conn, uint32_t* state);

Parameters are represented by the connection object pointer and the value pointer with the size of 4 bytes which will include the current
status of the connection.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling may be used for periodic receiving of the connection status to be able to perform actions associated with switching of the
subscription object to different states – for instance, to close the connection if it switched to the error state. For more details on the object
status, see the ‘Life cycle of objects’ section.

This function is available for calling at any time between calls of cg_pub_new and cg_pub_destroy.

Example of function call:

cg_publisher_t* conn; // connection object indicator
uint32_t state; // Status will be recorded here

result = cg_conn_getstate(conn, &state);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query connection state: 0x%X\n", result);
 return;
}

switch (state)
{
 case CG_STATE_ERROR: /* ... */
 case CG_STATE_CLOSED: /* ... */
}

2.6. Listener
The ‘Listener’ object provides receiving of messages via the specified connection. Rules of messages receiving depend on the listener type
— these may be both peer-to-peer messages and publish-subscribe messages, such as replication.

Operations with the ‘Listener’ objects in API are performed via the ‘cg_listener_t*’ indicator.

2.6.1. cg_lsn_new
Listener is created by calling:

CG_RESULT cg_lsn_new(cg_conn_t* conn, const char* settings, CG_LISTENER_CB callback, void* data,
cg_listener_t** lsnptr);

Parameters are represented by: pointer the initialized connection object where a listener is created, listener initialization string, indicator of
the callback function, that will be called upon certain events, arbitrary pointer that will be transferred to the callback function and a pointer
that will include the pointer of the created listener.

The connection creation string is set in the URL format in the following way:

"TYPE://[STREAM][;param1=value1[;param2=value[;...[;paramN=valueN]]]]", where

TYPE Subscription type. The following subscription types are available:

p2repl Receiving a table thread of the Plaza-2 replication

p2mqreply Receiving replies to previously sent messages

p2ordbook Receiving active applications with usage of orderbooks snapshots for initial synchronization, and then switching to
the online thread

p2sys Receive status of connection, router, authorisation

Client program interface 14.04.2020

32

The other parameters depend on the subscription type.

Parameters available by the ''p2repl' subscription type:

STREAM Sets the name of the table replication thread.

"scheme" parameter Path to the applied data scheme of the thread. See Data schemes.

'tables' parameter List of requested tables from the server scheme, divided by comma. It is not allowed to set both 'tables' and
'schemes' parameters at the same time.

Parameters available by the ‘p2ordbook’ subscription type:

STREAM Specifies the name of the online thread with the orders operations log (FORTS_FUTTRADE_REPL
or FORTS_OPTTRADE_REPL)

"snapshot" parameter Name of the thread with snapshot of active orders (FORTS_FUTORDERBOOK_REPL or
FORTS_OPTORDERBOOK_REPL).

"online.scheme" parameter Path to the applied data scheme of online stream. Scheme must contain the 'orders_log' table.

"snapshot.scheme" parameter Path to the applied data scheme of the snapshot stream. The scheme must contain the ‘orders’ and
‘info’ tables.

"online.data" parameter Name of the table containing orders for online stream. The default value is 'orders_log'.

"snapshot.data" parameter Name of the table containing orders for the snapshot stream. The default value is 'orders'.

"snapshot.bind" parameter Name of the table and and the field with revision. The table and the field are used for binding streams.
The default value is 'info.logRev'.

Parameters available by the ‘p2mqreply’ subscription type:

"ref" parameter Contains the name of the publisher which was used for sending of the messages with replies to be received in this
listener. At the moment of creating the 'p2mqreply' listener, there must already exist a publisher object bound with
the listener by 'ref'.

The ‘p2mqreply’ listener uses the scheme set in the associated publisher as a data scheme. This data scheme will be returned by calling
cg_lsn_getscheme.

The ‘p2ordbook’ listener uses a combination of snapshots and online threads as a scheme. In this respect, data at the moment of snapshot
delivery will correspond to messages from the scheme with data snapshots, and after switching to the online mode the messages from the
online scheme will be delivered. When static data structures are used for working with the messages of this thread, descriptions of structures
must be available both for snapshot and for online data, and in the respective attention should be paid to the indices of corresponding
tables. When the dynamic approach is applied to work with schemes, standard practices must be used — remember numbers of desired
messages and fields and use them upon data delivery.

The ‘callback’ parameter of the function indicates the user-defined callback function which looks like:

CG_RESULT callback(cg_conn_t* conn, cg_listener_t* listener, struct cg_msg_t* msg, void* data);

This function is called upon occurrence of any event on this subscription: opening of subscription, closing, message delivery, etc. Parameters
of the callback function are represented by the indicator of the subscription connection, the indicator of the subscription object that is related
to the event, the message indicator and the user ‘data’ indicator which was transferred for calling ‘cg_lsn_new’. User handler return code
should be set to 0 in case of successful processing of the message or to another value in case of error. If 'callback' returns an error,
the listener will close, and callback will receive the following messages, one by one: 'replstate', containing the listener status by the last
'CG_MSG_TN_COMMIT', and 'CG_MSG_CLOSE'

Important
Calling of the ‘cg_lsn_new’ function performs only initialization of the subscription object but does not lead to the actual com-
mencement of data receiving; to commence with the receiving of data, you should switch the subscription to the active state by
calling cg_lsn_open.

The user-defined callback function may include the following messages:

Subscriber
type

Message type Description

p2repl,
p2mqreply,
p2sys

CG_MSG_OPEN The message is delivered at the moment of data stream activation. This event
surely occurs before receiving of any data on this subscription. For data streams,
delivery of the message means that the data scheme was agreed and is ready
for usage (For more details, see Data schemes). This message does not contain
additional data, and its ‘data’ and ‘data_size’ fields are not used.

Client program interface 14.04.2020

33

Subscriber
type

Message type Description

p2repl,
p2mqreply,
p2sys

CG_MSG_CLOSE The message is delivered at the moment of data stream closure. Delivery of the
message means that the stream was closed by the user or by the system. The
'data' field contains header to 'int', the address contains a reason of closing the
listener. The following reasons are possible:

• CG_REASON_UNDEFINED - reason undefined.

• CG_REASON_USER - reason returned to 'callback' of the listener by user.

• CG_REASON_ERROR - internal error.

• CG_REASON_DONE - 'cg_lsn_destroy' called.

• CG_REASON_SNAPSHOT_DONE - snapshot received.

p2repl CG_MSG_TN_BEGIN Indicates the moment when receiving of the next data block is started. It may be
used by the program logics for control of data integrity together with the next mes-
sage. This message does not contain additional data, and its ‘data’ and ‘data_size’
fields are not used.

p2repl CG_MSG_TN_COMMIT Indicates the moment when receiving of the next data block is completed. By the
moment of this message delivery, it may be assumed that data received under this
subscription are in the consistent state and reflect tables in the inter-synchronized
state. This message does not contain additional data, and its ‘data’ and ‘data_size’
fields are not used.

p2repl CG_MSG_STREAM_DATA The message indicating delivery of stream data. The ‘data_size’ field contains the
amount of data received; ‘data’ indicates the information itself. The message it-
self contains additional fields, which are described by the 'cg_msg_streamdata_t'
structure. For more information see Receiving data streams

p2repl CG_MSG_P2REPL_ONLINE Stream switching to the online mode — it means that receiving of the initial snap-
shot has been completed, and the 'CG_MSG_P2REPL_DATA' messages bear
online data. This message does not contain additional data, and its ‘data’ and
‘data_size’ fields are not used.

p2repl CG_MSG_P2REPL_LIFENUM The scheme life number was changed. This message means that previous data
which were received on the stream are not urgent and should be cleaned. This will
be accompanied by re-translation of data on the new data scheme life number. The
‘data’ field of the message indicates an integer value containing the new scheme
life number; the ‘data_size’ field indicates the size of the integral type.

p2repl CG_MSG_P2REPL_CLEARDELETED Mass deletion of outdated data was performed. The ‘data’ field of the message
indicates the ‘cg_data_cleardeleted_t’ structure which indicates the number of
table and the number of revision — data in this table issued prior to this revi-
sion are deemed to be deleted. If revision number cg_data_cleardeleted_t ==
CG_MAX_REVISON, then the next revision numbers will continue from 1.

p2repl CG_MSG_P2REPL_REPLSTATE The message indicates the state of data stream; it is sent before closure of the
stream. The ‘data’ field of the message indicates the string which indicates the en-
coded state of the data stream as of the moment of the message delivery — the da-
ta scheme, table revision numbers and the scheme life number are preserved. This
string may be transferred for calling the ‘cg_lsn_open’ function as the ‘replstate’
parameter on the same stream for the next time; therefore, data receiving will con-
tinue upon shutdown of the stream.

p2mqreply,
p2sys

CG_MSG_DATA The message contains a reply to the previously sent state. The ‘data’ field indicates
data, and the ‘data_size’ field contains the size of the data block. The message is
described by the ‘cg_msg_data_t’ structure and contains additional fields allowing
to identify the initial message along with information about the data scheme. For
more details see Sending commands and receiving replies.

p2mqreply CG_MSG_P2MQ_TIMEOUT p2mqreply CG_MSG_P2MQ_TIMEOUT The message is delivered if the reply to
the previously sent message was not received during the time period specified in
the corresponding publisher. The message is described by the ‘cg_msg_data_t’
structure and contains the ‘user_id’ value which is set upon sending of the initial
message.

URL examples:

• p2sys://;name=p2sys_lsn

• p2repl://FORTS_FUTINFO_REPL;name=repl_sample1

• p2repl://FORTS_ORDLOG_REPL;scheme=|FILE|./ini/ordlog_repl.ini|scheme;name=repl_sample2

Client program interface 14.04.2020

34

• p2ordbook://FORTS_ORDLOG_REPL;snapshot=FORTS_ORDBOOK_REPL;name=ordbook_sample1

• p2ordbook://FORTS_FUTTRADE_REPL;snapshot=FORTS_FUTORDERBOOK_REPL;
online.scheme=|FILE|ini/futtrade.ini|FutTrade;name=ordbook_sample2

• p2ordbook://FORTS_FUTTRADE_REPL;snapshot=FORTS_FUTORDERBOOK_REPL;
online.scheme=|FILE|ini/futtrade.ini|FutTrade;snapshot.scheme=|FILE|ini/orderbook.ini|CustReplScheme;name=ordbook_sample3

• p2mqreply://;ref=pub_name;name=mqreply_sample

Example of the listener created for receiving of the data stream:

cg_conn_t* conn; // indicator of the ‘Connection' initialized object

const char* lsn_str = "p2repl://FORTS_FUTINFO_REPL";
cg_listener_t* lsn;

result = cg_lsn_new(conn, lsn_str, callback, 0, *lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize listener: 0x%X\n", result);
 return;
}

Example of the listener created for receiving of replies to commands sent:

cg_conn_t* conn; // indicator of the ‘Connection' initialized object

// command sending publisher initialization string
// the ‘name=TN1’ parameter is specified

const char* pub_str = "p2mq://FORTS_SRV;category=FORTS_MSG;name=TN1";
cg_publisher_t* pub;

// reply receiving listener initialization string
// the ‘ref=TN1’ parameter is specified, it provides communication with the publisher
const char* lsn_str = "p2mqreply://;ref=TN1";
cg_listener_t* lsn;

result = cg_lsn_new(conn, lsn_str, callback, 0, *lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize listener: 0x%X\n", result);
 return;
}

2.6.2. cg_lsn_open
Subscription is opened by calling:

CG_RESULT cg_lsn_open(cg_listener_t* lsn, const char* settings);

Parameters are represented by the subscription object indicator and the subscription opening string. The opening parameters string is set
in the "param1=value1;param2=value2;....;paramN=valueN" format, and in this case the names and values of parameters depend on the
type of subscription. Parameter 'settings' can only be specified for 'p2repl-listener', as it is not used for other objects!

Parameters of the 'p2repl' subscription opening are the following:

mode Specifies the data receiving mode and may take the following values:

snapshot The thread is opened in the data snapshot receiving mode. In this case, online data will not
be transmitted

online The thread is opened in the online data receiving mode. Data snapshot will not be received,
data will be transferred upon opening of the stream

snapshot+online The thread is opened in the snapshot receiving mode, and then passes to the online data
receiving mode.

replstate Specifies the stream state which should be used for opening. Value of this parameter must correspond to the string
received in the 'CG_MSG_P2REPL_REPLSTATE' message upon previous closure of the stream.

lifenum Sets the scheme life number. This parameter may be used for connection to the data stream if the possibilities provided
by the ‘replstate’ parameter are not suitable by any reason. If the ‘replstate’ parameter is set, then the value of this
parameter will be ignored.

Client program interface 14.04.2020

35

rev.TABLE_NAME Sets the initial revision of the 'table TABLE_NAME'. The name of the desired table should be inserted instead
of TABLE_NAME. This parameter may be used for connection to the data stream if the possibilities provided by
the 'replstate' parameter are not suitable by any reason. If the ‘replstate’ parameter is set, then the value of this
parameter will be ignored. This parameter may be specified several times for different tables in the stream, e.g.
‘rev.orders_log=234445;rev.deal=55’. It is prohibited to set the 'TABLE_NAME' version value without setting the
'lifenum=%d' value! Also, it is prohibited to set both the 'TABLE_NAME' version value and the "replstate" value at the
same time! Therefore, only 3 combinations of parameters are allowable:

• replstate

• lifenum

• lifenum + revision

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to open the subscription when it was impossible to open it since it is either already
active or in the error state.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

Important
If the function returns the ‘CG_ERR_OK’ value, it does not mean that the subscription was successfully opened — this may be
specified only by the subscription status change (‘cg_lsn_getstate’). Successful running of this function indicates that the sub-
scription opening process was successfully started, and some time later the subscription may switch to the ‘CG_STATE_ACTIVE’
state in case of success, or to the ‘CG_STATE_ERROR’ state in case of a failure at opening.

The 'replstate' and ('lifenum' + rev.TABLE_NAME) parameters are mutually exclusive.

Example of function calling:

cg_listener_t* lsn; // indicator of the object initialized by calling ‘cg_lsn_new’
const char* lsn_open_str = "mode=online";

result = cg_lsn_open(lsn, lsn_open_str);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to open listener: 0x%X\n", result);
 // Try to reopen the listener
}

2.6.3. cg_lsn_close
Subscription is closed by calling:

CG_RESULT cg_lsn_close(cg_listener_t* lsn);

The parameter is represented by the subscription object indicator.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to close the connection when it has been closed.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

After closing of the subscription, it may be reopened by calling cg_lsn_open.

Example of function calling:

cg_listener_t* lsn; // pointer to the opened listener

result = cg_lsn_close(lsn);
if (result != CG_ERR_OK)

Client program interface 14.04.2020

36

{
 fprintf(stderr, "Failed to close listener: 0x%X\n", result);
 return;
}

2.6.4. cg_lsn_destroy
Subscription is destroyed by calling:

CG_RESULT cg_lsn_destroy(cg_listener_t* lsn);

The parameter is represented by the subscription object indicator.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to destroy the connection, when it has not been correctly closed.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling destroys the object which is indicated by the ‘lsn’ parameter and releases all associated resources. Upon calling of this function,
the object cannot be used any more. This function must be called for every object created by calling ‘cg_lsn_new’, regardless of the fact
whether the actions (opening, data acquisition, sending of messages) were or were not performed with this object.

When destroying an active 'listener' object, cgate closes the listener, and then destroys it.

Example of function calling:

cg_listener_t* lsn; // indicator of the object which was closed by calling cg_lsn_close

result = cg_lsn_destroy(lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to destroy listener: 0x%X\n", result);
 return;
}

2.6.5. cg_lsn_getstate
Listener status is received by calling:

CG_RESULT cg_lsn_getstate(cg_listener_t* lsn, uint32_t* state);

Parameters are represented by the subscription object indicator and the value indicator with the size of 4 bytes which will include the current
status of the listener.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling may be used for periodic receiving of the listener status to be able to perform actions associated with switching the subscription
object to different states – for instance, to close subscription if it switched to the error state. For more details on the object status, see the
Life cycle of objects section.

Example of function calling:

cg_listener_t* lsn; // Pointer to the listener object
uint32_t state; // Here status will be written

result = cg_lsn_getstate(lsn, &state);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query listener state: 0x%X\n", result);
 return;
}

Client program interface 14.04.2020

37

switch (state)
{
 case CG_STATE_ERROR: /* ... */
 case CG_STATE_CLOSED: /* ... */
}

2.6.6. cg_lsn_getscheme
Listener’s scheme is received by calling:

CG_RESULT cg_lsn_getscheme(cg_listener_t* lsn, cg_scheme_desc_t** schemeptr);

Parameters are represented by the subscription object pointer and the pointer of the variable which will include the scheme description
pointer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see the analysis of the library logs.

Calling is used to receive the data scheme of the subscription object (for more details see Work with data schemes). The data scheme is
available upon delivery of the ‘OPEN’ event for subscription. If the data scheme was not explicitly set at the moment of subscription creation,
the scheme may be changed between two working sessions, i.e. in the general case you cannot rely on the situation when, in the chain
of open/close calls, the open/close scheme after the first open will be the same as the scheme after the second open call. This may be
decided either by indicating the client data scheme, when it is supported by the subscription type or by analyzing the scheme each time
when the ‘OPEN’ event is delivered.

Example of function calling:

cg_listener_t* lsn; // subscription object indicator
cg_scheme_desc_t* schemedesc; // Scheme description indicator will be recorded here

result = cg_lsn_getscheme(lsn, &schemedesc);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query listener scheme: 0x%X\n", result);
 return;
}

// print the number of messages in the scheme
printf("Number of messages: %d\n", schemedesc->num_messages);

2.7. Publisher
The ‘Publisher’ object provides sending of messages via the specified connection. Rules of messaging depend on the publisher type and
connection.

Operations with the ‘Publisher’ objects in API are performed by using the ‘cg_publisher_t*’ pointer.

2.7.1. cg_pub_new
Listener is created by calling:

CG_RESULTcg_pub_new(cg_conn_t* conn, const char* settings, cg_publisher_t** pubptr);

Parameters are represented by: a pointer to the initialized connection object where a publisher is created, publisher initialization string and
a pointer which will include the pointer of the created listener.

The connection creation string is set in the URL format in the following way: "TYPE://[NAME][;param1=value1[;param2=value[;...
[;paramN=valueN]]]]",

where

TYPE Publisher type. The following types are supported:

p2mq Sending arbitrary messages to Plaza-2

p2sys Sending authentication requests or logoff requests. For details see 'Objects of the p2sys protocol'

Client program interface 14.04.2020

38

"name" parameter Defines a unique name of the publisher. May be used for interaction between paired publishers and listeners (for
instance, the ‘mq’ publisher and ‘mqreply’ listener).

The other parameters depend on the subscription type.

Parameters available by the ‘p2mq' publisher type:

NAME Specifies the name of the service which will receive messages sent by this publisher.

"scheme" parameter Path to the applied data scheme (see Data schemes). The applied data scheme must contain descriptions
of requests and replies — the associated ‘p2mqreply’ listener will use this data scheme in the analysis of
messages.

"category" parameter Category of messages being sent. To send commands to the FORTS trading system, this parameter should
be fixed as ‘FORTS_MSG’

"timeout" parameter Time spent on waiting for the reply to the sent message in milliseconds.

"version" parameter Data scheme version. The setting is used exclusively for obtaining data schemes from repository.

.

Important
Calling of the ‘cg_pub_new’ function only initializes the publisher object, but does not actually allow to send messages; in order
to commence messaging, you should send the publisher to the active state by calling cg_pub_open.

Example of the listener created for data sending to the trading system:

cg_conn_t* conn; // pointer to the initialized Connection object

const char* pub_str = "p2mq://FORTS_SRV;category=FORTS_MSG;name=TN1";
cg_publusher_t* pub;

result = cg_pub_new(conn, pub_str, *pub);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize publisher: 0x%X\n", result);
 return;
}

For the further information on receiving reports to the publisher commands, see the section describing the cg_lsn_new function.

2.7.2. cg_pub_open
Publisher is opened by calling:

CG_RESULT cg_pub_open(cg_publisher_t* pub, const char* settings);

Parameters are represented by the publisher object indicator and the opening string. At the present moment, publishers do not require
setting of the parameter string, and this parameter should be ‘NULL’ or there should be empty string.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to open the publisher when it was impossible to open it since it was either already
active or in the error state. Internal error. May indicate a malfunction of configuration or running environment.
For more detailed diagnosis, see analysis of the library logs.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

Important
If the function returns the ‘CG_ERR_OK’ value, it does not mean that the publisher was successfully opened — this may be
determined only by the subscription status change (cg_pub_getstate). Successful running of this function means that the publisher
opening process was successfully started, and some time later the subscription may pass to the ‘CG_STATE_ACTIVE’ state in
case of a success, or to the ‘CG_STATE_ERROR’ state in case of a failure in opening.

Example of function call:

cg_publisher_t* pub; // indicator of the object initialized by calling ‘cg_pub_new’

Client program interface 14.04.2020

39

result = cg_pub_open(pub, 0);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to open publisher: 0x%X\n", result);
 // Try to reopen the publisher
}

2.7.3. cg_pub_close
Publisher is closed by calling:

CG_RESULT cg_pub_close(cg_publisher_t* pub);

The parameter is represented by the publisher object pointer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to close the connection when it is closed.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

After closure of the listener, it may be reopened by calling cg_pub_open.

Example of function call:

cg_publisher_t* pub; // indicator of the opened publisher

result = cg_pub_close(pub);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to close publisher: 0x%X\n", result);
 return;
}

2.7.4. cg_pub_destroy
Publisher is destroyed by calling:

CG_RESULT cg_pub_destroy(cg_publisher_t* pub);

The parameter is represented by the publisher object pointer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to destroy the connection when it wasn’t correctly closed.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling destroys the object which is indicated by the ‘pub’ parameter and releases all associated resources. Upon calling of this function,
the object cannot be used any more. This function must be called for every object created by the calling cg_pub_new ‘’, regardless of the
fact if actions (opening, sending of messages) were performed with this object or not.

When calling 'cg_pub_destroy' for active publisher, the publisher closes and then destroys.

Examples:

p2sys://;name=p2sys_pub
p2mq://FORTS_SRV;category=FORTS_MSG;name=srvlink;timeout=5000;scheme=|FILE|forts_messages.ini|message

Example of function call:

cg_publisher_t* pub; // indicator of the object which was closed by calling cg_pub_close

result = cg_pub_destroy(pub);

Client program interface 14.04.2020

40

if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to destroy publisher: 0x%X\n", result);
 return;
}

2.7.5. cg_pub_getstate
Publisher status is received by calling:

CG_RESULT cg_lsn_getstate(cg_listener_t* lsn, uint32_t* state);

Parameters are represented by the publisher object pointer and the value pointer with the size of 4 bytes which will include the current
status of the publisher.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling may be used for periodic receiving of the publisher status to be able to perform actions associated with switching of the
subscription object to different states – for instance, to close the publisher if it switched to the error state. For more details on the object
status, see the ‘Life cycle of objects’ section.

This function is available for calling at any time between calls of cg_pub_new and cg_pub_destroy.

Example of function call:

cg_publisher_t* pub; // publisher object indicator
uint32_t state; // Status will be recorded here

result = cg_pub_getstate(pub, &state);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query publisher state: 0x%X\n", result);
 return;
}

switch (state)
{
 case CG_STATE_ERROR: /* ... */
 case CG_STATE_CLOSED: /* ... */
}

2.7.6. cg_pub_getscheme
Publisher’s scheme is received by calling:

CG_RESULT cg_pub_getscheme(cg_publisher_t* pub, cg_scheme_desc_t** schemeptr);

Parameters are represented by the publisher object pointer and the pointer to the variable which will include the scheme description pointer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see the analysis of the library logs.

Calling is used to get the data scheme of the subscription object (for details see Work with data schemes). The data scheme is available
upon the publisher switching into the ‘ACTIVE’ mode. If the data scheme was not explicitly set at the moment of publisher creation, the
scheme may be changed between two working sessions, i.e. in general case you cannot rely on the situation when, in the chain of open/
close calls, the open/close scheme after the first open will be the same as the scheme after the second open call. This may be decided
either by indication of the client data scheme when it is supported by the subscription type, or by analysis of the scheme each time when
the ‘OPEN’ event is delivered.

Example of function call:

Client program interface 14.04.2020

41

cg_publisher_t* pub; // publisher object indicator
cg_scheme_desc_t* schemedesc; // Scheme description indicator will be recorded here

result = cg_pub_getscheme(pub, &schemedesc);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query publisher scheme: 0x%X\n", result);
 return;
}

// print number of messages in scheme
printf("Number of messages: %d\n", schemedesc->num_messages);

2.7.7. cg_pub_msgnew
A new message for sending is created by calling:

CG_RESULT cg_pub_msgnew(cg_publisher_t* pub, uint32_t id_type, const void* id, struct cg_msg_t** ms-
gptr);

Parameters are represented by the publisher object pointer, the message key type, the key value pointer and the pointer of the variable
which will include the pointer to the created message.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

This calling initializes a message for sending via this publisher. The desirable message is identified by the key type and value in the publisher
data scheme. The following key types are available:

CG_KEY_INDEX The key is represented by the message number in the scheme. The ‘id’ parameter indicates the value of the ‘uint32_t’
type, which stores the desirable message number

CG_KEY_ID The key is represented by the unique numeric identifier of the message in the scheme. The ‘id’ parameter indicates the
value of the ‘uint32_t’ type which stores the desirable message identifier

CG_KEY_NAME The key is represented by the message name in the scheme. The ‘id’ parameter indicates the string, which includes the
name of the desirable message. The string should end with null.

A message created by this function is the message of the ‘CG_MSG_DATA’ type and is described by the extended structure:

struct cg_msg_data_t
{
 // Message type. Always CG_MSG_DATA for this message
 uint32_t type;
 // Amount of data
 size_t data_size;
 // Pointer to data
 void* data;

 // Message description number in the active scheme
 size_t msg_index;
 // Unique identifier of the message type
 uint32_t msg_id;
 // Message name in the active scheme
 const char* msg_name;

 // User ID of the message
 uint32_t user_id;
 // Address of the opposite party
 const char* addr;
 // Reference message indicator
 struct cg_msg_data_t* ref_msg;
};

The ‘data_size’ field contains the size of the selected memory block for the requested message format, and the ‘data’ field points to this
memory block. The ‘msg_index’, ‘msg_id’ and ‘msg_name’ fields are filled with data according to the applied data scheme. The ‘user_id’
field may be used for setting the user ID of the message — the same ‘user_id’ will be indicated in the reply message, which allows to bind
the request and the reply.

Client program interface 14.04.2020

42

The user code should compare the block size in the ‘data_size’ field, which is detached for the message with the expected version regarding
the size of this block in order to avoid errors while filling the message. Then it is required to fill in the block using the ‘data’ indicator. After
that, the message is ready for sending.

Example of function call:

cg_publisher_t* pub; // publisher object indicator
cg_msg_data* msg;

result = cg_pub_msgnew(pub, CG_KEY_NAME, "FutDelOrder", &msg);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to allocate message: 0x%X\n", result);
}
else
{
 FutDelOrder* delord;
 if (msg->data_size != sizeof(*delord))
 {
 fprintf(stderr, "Block sizes do not match: %d expected, but got %d \n",
 sizeof(*delord), msg->data_size);
 }
 else
 {
 delord = (FutDelOrder*)msg->data;
 delord->order_id = ...; // number of the deleting application

 result = cg_pub_post(pub, msg, CG_PUB_NEEDREPLY);
 if (result != CG_ERR_OK)
 {
 fprintf(stderr, "Failed to post message: 0x%X\n", result);
 }
 }
}

2.7.8. cg_pub_post
Message is sent by calling:

CG_RESULT cg_pub_post(cg_publisher_t* pub, struct cg_msg_t* msg, uint32_t flags);

Parameters are represented by the publisher object indicator, the message indicator and message sending flags.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INCORRECTSTATE An attempt was made to send a message when the connection is not active.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

The calling tries to send the message. The message to be sent should be preliminarily initialized by calling ‘cg_pub_msgnew’and filled with
user data. The ‘CG_PUB_NEEDREPLY’ value must be indicated as flag which notifies the system on the necessity to wait for the reply to
the sent message. If no reply is expected for the message sent (COD_HEARTBEAT, etc.), then value 0 should be indicated as flag.

Reply message may be received by means of the subscription of the ‘p2mqreply’ type (for more details see description of the cg_lsn_new
function).

Example of function call:

cg_publisher_t* pub; // publisher object indicator
cg_msg_data* msg; // initialized message indicator

result = cg_pub_post(pub, msg, CG_PUB_NEEDREPLY);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to post message: 0x%X\n", result);
}
cg_pub_msgfree(pub, msg);

Client program interface 14.04.2020

43

2.7.9. cg_pub_msgfree
Message is released by calling:

CG_RESULT cg_pub_msgfree(cg_publisher_t* pub, struct cg_msg_t* msg);

Parameters are represented by the publisher object indicator and the indicator of the message to be released.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_INTERNAL Internal error. May indicate a malfunction of configuration or running environment. For more detailed diag-
nosis, see analysis of the library logs.

The calling destroys the previously selected message. After this function has been called, the message, the ‘msg’ parameter points to,
becomes unavailable for further usage, and all resources associated with this message are released. The function must be called for any
message created by the ‘cg_pub_msgnew’ function, when the message has been sent and work with this message has been completed.

Example of function call:

cg_publisher_t* pub; // publisher object indicator
cg_msg_data* msg; // initialized message indicator

result = cg_pub_msgfree(pub, msg);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to post message: 0x%X\n", result);
}

2.8. Logging
The logging functions below output data as string (format string or common string) into log.

2.8.1. cg_log_trace
Outputs a format string with a trace message into log, similar to function 'sprintf' in C language. Executed by calling

CG_RESULT CG_APIcg_log_trace(const char*fmt, ...);

where 'fmt' is a C language format string ended with null. For more information see the function 'sprintf' specifications.

Return values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments (fmt = 0).

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_trace("Print test int: %d ", i);
std::string s("test str");
cg_log_trace("Print test str: %s ", s.c_str());

2.8.2. cg_log_debug
Outputs a format string with a debug message into log, similar to function 'sprintf' in C language. Executed by calling

CG_RESULT CG_APIcg_log_debug(const char*fmt, ...);

where 'fmt' is a C language format string ended with null. For more information see the function 'sprintf' specifications.

Return values:

Client program interface 14.04.2020

44

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments (fmt = 0).

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_debug("Print test int: %d ", i);
std::string s("test str");
cg_log_debug("Print test str: %s ", s.c_str());

2.8.3. cg_log_info
Outputs a format string with an information message into log, similar to function 'sprintf' in C language. Executed by calling

CG_RESULT CG_APIcg_log_info(const char*fmt, ...);

where 'fmt' is a C language format string ended with null. For more information see the function 'sprintf' specifications.

Return values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments (fmt = 0).

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_info("Print test int: %d ", i);
std::string s("test str");
cg_log_info("Print test str: %s ", s.c_str());

2.8.4. cg_log_error
Outputs a format string with an error message into log, similar to function 'sprintf' in C language. Executed by calling

CG_RESULT CG_APIcg_log_error(const char*fmt, ...);

where 'fmt' is a C language format string ended with null. For more information see the function 'sprintf' specifications.

Retur values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments (fmt = 0).

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_error("Print test int: %d ", i);
std::string s("test str");
cg_log_error("Print test str: %s ", s.c_str());

2.8.5. cg_log_tracestr
Outputs a format string with a trace message into log. Executed by calling:

CG_RESULT CG_APIcg_log_tracestr(const char*str);

Return values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments.

Client program interface 14.04.2020

45

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_tracestr("Print test int);
std::string s("test str");
cg_log_tracestr("Print test str);

2.8.6. cg_log_debugstr
Outputs a format string with a debug message into log. Executed by calling:

CG_RESULT CG_APIcg_log_debugstr(const char*str);

Return values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments.

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_debugstr("Print test int);
std::string s("test str");
cg_log_debugstr("Print test str);

2.8.7. cg_log_infostr
Outputs a format string with an information message into log. Executed by calling:

CG_RESULT CG_APIcg_log_infostr(const char*str);

Return values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments.

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_infostr("Print test int);
std::string s("test str");
cg_log_infostr("Print test str);

2.8.8. cg_log_errorstr
Outputs a format string with an error message into log. Executed by calling:

CG_RESULT CG_APIcg_log_errorstr(const char*str);

Return values:

CG_ERR_OK Success.

CG_ERR_INVALIDARGUMENTInvalid arguments.

CG_ERR_INCORRECTSTATE 'cg_env_open' was not called.

Example:

int i =10;
cg_log_errorstr("Print test int);
std::string s("test str");
cg_log_errorstr("Print test str);

Client program interface 14.04.2020

46

2.9. Objects of the p2sys protocol
The p2sys protocol is used for user authentication purposes in Cgate. The protocol contains three objects: connection, listener and publisher.

2.9.1. P2sys connection
The p2sys connection is a special type of connection to Plaza-II, and is used solely for sending authentication requests and receiving
replies. The connection should be created and established by the following method:

cg_conn_t* conn;

result = cg_conn_new("p2sys://127.0.0.1:4001;app_name=test_p2sys", &conn);

result = cg_conn_open(conn, 0);

To close down the connection, use the standard method:

conn_close(conn);

2.9.2. P2sys listener
The p2sys listener is used for tracking statuses of connection to the Plaza-II router and notify user of the status change. Every status
change is described with the 'CG_MSG_DATA' message with unique 'msgid'.

Connection statuses are subdivided into two categories:

• connection status - status of connection between client and router. If connection is established successfully, the listener status is set to
'ConnectionConnected (msgid = 3)', otherwise - 'ConnectionDisconnected (msgid = 4)';

• router status - flag of user authentication in the system. First, the listener status is set to 'RouterDisconnected (msgid = 2)'. If the client
login-password pair is correct, the router status is set to 'RouterConnected (msgid = 1)', otherwise - 'LogonFailed (msgid = 5)'. If the
login-password pair is specified in the INI file of the router, the router status immediately sets to 'RouterConnected'.

The listener should be created and opened by the following method:

listener_t* lsn = 0;

result = lsn_new(conn, "p2sys://;name=p2sys_lsn", &MessageCallback, 0, &lsn);

result = lsn_open(lsn, 0);

, where the 'MessageCallback' function contains handler of incoming messages.

To close down the listener, use the following method:

lsn_close(lsn);

2.9.3. P2sys publisher
The p2sys publisher is used for sending authentication or disconnection requests . The publisher can sends the following messages of
the 'CG_MSG_DATA' type:

• RouterLogin (msgid = 1). Authentication request, contains the "USERNAME=%user_name%;PASSWORD=%password%" line in the data
field.

• RouterLogout (msgid = 2). Disconnection request, contains no data.

The publisher should be created and opened by the following method:

publisher_t* pub = 0;

result = pub_new(conn, "p2sys://;name=p2sys_pub", &pub);

result = pub_open(pub, 0);

To close down the publisher, use the standard method:

pub_close(pub);

2.10. Auxiliary functions
2.10.1. cg_bcd_get

The function allows to receive a BCD-number in the form of two components: the integral part and the decimal point position.

Client program interface 14.04.2020

47

CG_RESULT cg_bcd_get(void* bcd, int64_t* intpart, int8_t* scale);

Parameters of the function are represented by the number pointer in the BCD-format (‘bcd’), the pointer of the variable which will include
the number value in the form of integral number and the pointer of the variable which will include the decimal point position in relation to
the end of the number.

For instance, for the initial number 123.45 the function will record the value 12345 into the ‘intpart’ variable, and the value 2 into the ‘scale’
variable.

Important
The maximum number of signs represented in the form of a 64-bit integral number, is equal to 19. In order to receive values of
BCD-numbers with the size exceeding 19 signs, you should use the 'cg_getstr' call to represent numbers in the form of strings.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_OVERFLOW The delivered number is too large to be represented as 64-bit integer number.

Example of a function call:

void* bcd; // indicator of the BCD-number
int64_t value; // the integral number will be recorded here
int8_t scale; // the decimal point position will be recorded here

result = cg_bcd_get(bcd, &value, &scale);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to convert decimal: 0x%X\n", result);
}

// print the value as a floating-point number
printf("Value is: %f\n", (double)value/pow(10.0, scale));

2.10.2. cg_getstr
The function allows to receive an arbitrary type string representation.

CG_RESULT cg_getstr(char* type, void* data, char* buffer, size_t* buffer_size);

Parameters of the function are represented by the field type in the Plaza-2 format (see the 'Work with data schemes' section) as the ‘type’
string, pointer to memory area, which stores the ‘data’ value, pointer to the buffer, which will include the ‘buffer’ string representation and
the pointer to a variable that contains the buffer size value (‘buffer_size’).

If the buffer size is too small for recording of the string representation, the function will return the 'CG_ERR_BUFFERTOOSMALL' error
code and will record the required buffer size in the ‘buffer_size’ field.

When the function returns 'CG_ERR_OK' code, the 'buffer_size' parameter will contain the number of symbols written into buffer.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_BUFFERTOOSMALLThe transferred buffer is too small for string representation of the type.

CG_ERR_INCORRECTSTATE Environment not initialized.

Example of a function call:

void* bcd; // indicator of the BCD-number

char buf[32];
size_t bufsize = sizeof(buf);

result = cg_getstr("d26.2", bcd, buf, &bufsize);
if (result == CG_ERR_BUFFERTOOSMALL)
{
 char* buf2 = new char[bufsize];

Client program interface 14.04.2020

48

 result = cg_getstr("d26.2", bcd, buf2, &bufsize);
 if (result != CG_ERR_OK)
 fprintf(stderr, "Failed to convert value: 0x%X\n", result);
 else
 printf("Value is %s\n", buf2);
 delete[] buf2;
}
else
if (result == CG_ERR_OK)
{
 printf("Value is %s\n", buf);
}
else
{
 fprintf(stderr, "Failed to convert value: 0x%X\n", result);
}

2.10.3. cg_msg_dump
The function allows to get a text dump of an arbitrary message.

CG_RESULT cg_msg_dump(struct cg_msg_t* msg, struct cg_scheme_desc_t* schemedesc, char* buffer, size_t*
buffer_size);

Parameters of the function are represented by the message pointer (‘msg’), the scheme description pointer (‘schemedesc’), pointer to the
buffer which will include the text dump ‘buffer’ and pointer to the variable which contains the buffer size value (‘buffer_size’).

If the buffer size is too small for recording of the string representation, the function will return the ‘CG_ERR_BUFFERTOOSMALL’ error
code and will record the required buffer size value in the ‘buffer_size’ field.

Return values:

CG_ERR_OK Successful running.

CG_ERR_INVALIDARGUMENTInvalid arguments were transferred to the function.

CG_ERR_BUFFERTOOSMALLThe delivered buffer is too small for message dump.

If the ‘schemedesc’ parameter is not equal to ‘NULL’, the function will try to analyze the message using the transferred scheme. If the
‘schemedesc’ parameter is equal to ‘NULL’ or there is no message in the scheme or the message size doesn’t coincide with the size
specified in the scheme, the function will output a hexadecimal dump of the message.

It is convenient to use this function for debugging.

Example of function call:

cg_msg_t* msg; // message indicator
size_t bufsize = 0;

result = cg_msg_dump(msg, 0, 0, &bufsize);
if (result == CG_ERR_BUFFERTOOSMALL)
{
 char* buf = new char[bufsize];
 result = cg_msg_dump(msg, 0, buf, &bufsize);
 if (result != CG_ERR_OK)
 {
 fprintf(stderr, "Failed to dump message: 0x%X\n", result);
 }
 else
 {
 printf("%s\n", buf);
 }
 delete[] buf;
}
else
 fprintf(stderr, "Failed to dump message: 0x%X\n", result);

Client program interface 14.04.2020

49

3. Tools description
3.1. ‘Schemetool’ utility

The ‘schemetool’ utility is designed for working with data schemes.

At the present moment the system supports the function of data structures formation on programming languages corresponding to the
format of data stream messages.

3.1.1. makesrc - structures generation
The ‘makesrc’ mode is used to form the initial code with the description of the message structures. The generated structures may be used
for access to message fields.

A scheme is generated by the following call:

schemetool makesrc [options] [SOURCE SCHEME]

, where:

SOURCE Scheme source. Description of the scheme may be obtained from the ini-file, in this case the ini-file path should be transferred
as ‘SOURCE’. Scheme may be also generated from the data stream — in this case, two parameters must be transferred as
‘SCHEME_SOURCE’: ‘--conn CONN_STR’ and ‘--stream STREAM_NAME’; in this case, ‘CONN_STR’ sets the string of con-
nection with the ‘P2MQRouter’ router in the URL format, and ‘STREAM_NAME’ sets the name of the desired data stream.

SCHEME The desired scheme name, must be specified explicitly.

and 'options' are represented by the following parameters:

-o, --output -o FILENAME

Output file name. Results of the utility operation are recorded into this file. If this parameter is
not specified, then the default output ‘stdout’ are used.

-O, --output-format --output-format FORMAT

Structure description format. At the moment, the following formats are supported:

• c — C langiage structures

• java — Java language classes

• cs — C# language classes

• pas — Pascal language structures

• ini - output

--key User's authorisation key

--verbose, -v Output logs.

--stream Stream name to obtain output data.

--lsn URL of the listener object to obtain output data.

--conn URL to connect to Plaza II router.

--tables List of tables to be transmitted within output data.

--load Load plugin 'Cgate' to implement additional 'lsn' and 'pub' objects.

--scheme_name Specifies scheme name for the stream.

-Dgen-table-prefix=1 Used for the ‘c’ format. Usage of this key will lead to the situation when names of message
structures will be added with prefixes — names of message schemes. This mode may be used
to avoid name conflicts when using several schemes in the same INI-file in the situation when
messages with the same names exist in different schemes.

-Dgen-namespaces=1 Used for the ‘c’ and 'cs' formats. Usage of this key will lead to formation of ‘namespace’ with the
scheme name for each scheme of the INI-file. May be used to resolve the name conflict as an
alternative to the previous option if the C++ compiler is used for program compilation.

-Dgen-typedef=1 Create 'typedef' for each table

-Dgen-scheme-string=1 Create string expression for scheme

Client program interface 14.04.2020

50

-Dc-wchar-type=TYPE Set the 'TYPE' type for 'wchar_t' strings

-Djava-class-name=CLASSNAME Used for the 'java' format. Allows to specify the generating upper level Java class name.

-Djava-user-package=PACKAGE Used for the 'java' format. Allows to specify the packet name of the generating Java class.

-Djava-time-format=date Used for the 'java' format. The fields containing the 'date-time' type values will be converted into
'java.util.Date' (by default).

-Djava-time-format=long Used for the 'java' format. The fields containing the 'date-time' type values will be converted to
a 'long' type values, containing amount of milliseconds passed from 00:00:00 01.01.1970.

-Djava-bcd-format=bigdecimal Used for the 'java' format. The fields containing the BCD-type values will be converted into
'java.math.BigDecimal' (by default)

-Djava-bcd-format=long Used for the 'java' format. The fields containing the BCD-type values will be converted into 'long'.

-Dnet-user-namespace=NAMESPACE Used for the 'cs' format. Allows to specify the .NET name space for the generating class.

-Dnet-time-format=datetime Used for the 'cs' format. The fields containing the 'date-time' type values will be converted into
'DateTime' (by default).

-Dnet-time-format=long Used for the 'cs' format. The fields containing the 'date-time' type values will be converted into
a 'long' type values, containing amount of milliseconds passed from 00:00:00 01.01.1970.

-Dnet-bcd-format=decimal Used for the 'cs' format. The fields containing the BCD-type values will be converted into 'dec-
imal' (by default).

-Dnet-bcd-format=long Used for the 'cs' format. The fields containing the BCD-type values will be converted into 'long'
type values.

Examples of the utility usage:

schemetool makesrc -o futinfo.h forts_scheme.ini FUTINFO

- this example forms descriptions of structures in the ‘futinfo.h’ file using the C language for the 'FUTINFO' scheme from the ‘forts_scheme.ini’
file.

schemetool makesrc -o futinfo.pas --output-format pas forts_scheme.ini FUTINFO

- this example forms descriptions of structures in the ‘futinfo.h’ file using the Pascal language for the ‘FUTINFO’ scheme from the
‘forts_scheme.ini’ file.

schemetool makesrc -o futinfo.h --output-format c \
 --conn p2tcp://localhost:4001;app_name=stool \
 --stream FORTS_FUTINFO_REPL \
 --scheme_name FutInfo

- this example forms descriptions of structures in the ‘futinfo.h’ file using the C language for the data scheme of the ‘FORTS_FUTINFO_REPL’
stream accessible via the connection with the Plaza-2 router which is enabled on the same computer over the port 4001.

schemetool makesrc -o messages.h forts_messages.ini message

- this example forms descriptions of structures in the ‘messages.h’ file for messages of the FORTS trading system from the
‘forts_messages.ini’ file.

schemetool makesrc -o futinfo2.h --output-format c --conn "p2tcp://localhost:4001;
app_name=stool" --lsn p2repl://FORTS_FUTINFO_REPL

- This example generates connection to Plaza II router and URL of the listener object for the file 'futinfo2.h'.

schemetool makesrc --load cgate_micexd.dll -v --output-format ini --conn "tsmr://172.20.194.99;
snapshotinterval=5000;interval=10;
roundrobin=1;SERVER=INETCUR_GATEWAY;SERVICE=inetcur_gateway;USERID=XXXX;INTERFACE=IFC_Broker18;
LOGGING=4,0;SYNCTIME=0;CACHEFOLDER=.\cache" --lsn "data://;pricefieldtype=d16.6" --output res.ini

- This example starts plugin 'Cgate' to implement additional 'lsn' and 'pub' objects.

3.2. Utility change_password
Utility 'change_password' allows to change user authentication password for the Trading System via protocol 'p2mqpwd' (for details, see
section 'Password change protocol objects' by the following call :

change_password [options]

where options are:

Client program interface 14.04.2020

51

--key Mandatory setting. User certification key

--host Router IP address. Optional setting, the default value is 127.0.0.1

--port Router port. Optional setting, the default value is 4001

--ini INI file containing logging settings. Optional setting. If no INI file specified, the data will be output to console.

The utility returns 0 if the password change succeed, and 1 in case of any error.

Utility usage example:

change_password --key=72395823576

Client program interface 14.04.2020

52

4. API description for Java, .NET
4.1. Description

The following interface libraries are included into the P2 CGate distribution kit:

• cgate_java

The library implementing the interface with Javа platform

• cgate_net

The library implementing the interface with .NET platform

4.1.1. API CGate for Java
CGate support for Java is implemented through JNI interface. P2 CGate supply package includes the following components, related to
Java support:

• cgate jni interface library (cgate_jni.dll for Windows, libcgate_jni.so for Linux; CGATE_HOME/bin) catalogue

• Java cgate.jar class library (CGATE_HOME/sdk/lib catalogue)

• Example of using P2 CGate in Java (catalogue CGATE_HOME/sdk/samples/java)

The following are necessary for using P2 CGate in Java:

• use the 'cgate.jar' library during the project compilation

• while launching the project:

○ have 'cgate.jar' in classpath

○ have the 'cgate_jni' library in the path, used for loading the dynamic libraries (specified with 'Java.library.path')

○ have a set of P2 CGate libraries available for loading (CGATE_HOME/bin catalogue content)

It is possible to explicitly define the used cgate_jni library and paths to it using the following properties:

• ru.micexrts.cgate.name

Specifies the library file name

• ru.micexrts.cgate.path

Specifies the folder with the library file

For example:

java -cp .;lib/cgate.jar -Dru.micexrts.cgate.name=libcgate_jni.so.1 -Dru.micexrts.cgate.path=. MyApp

In this example, a user app of the 'MyApp' class is launched, using the 'cgate.jar' library from the ‘lib’ sub-catalogue; the 'cgate_jni' interface
library will be taken from the './libcgate_jni.so.1' file.

4.1.2. API CGate for .NET
Support of CGate for .NET platform is implemented through С++/CLI. P2 CGate distribution kit includes the following components, referring
to the .NET support:

• cgate_net.dll build (CGATE_HOME/bin) catalogue)

• Example of using P2 CGate in.NET (CGATE_HOME/sdk/samples/java catalogue)

In order to use P2 CGate from .NET it is necessary:

• to use the 'cgate_net.dll' build during the project compilation

• while launching the project :

○ have 'cgate_net.dll' available for loading by .NET platform

○ have a set of P2 CGate libraries available for loading (CGATE_HOME/bin catalogue content)

Important
Launching of the 'cgate_net' library at Mono platform is not supported.

Client program interface 14.04.2020

53

4.2. Object Cgate
Object 'Cgate' is used for initializing environment (see Start-up and shutdown of the environment).

Details Java .NET Function CGate API

Open connection CGate.open(String set-
tings)

CGate.Open(String set-
tings)

cg_env_open

Close connection CGate.close() CGate.Close() cg_env_close

4.3. 'Connection' object
The ‘Connection’ object provides access for the connection function (see Connection).

Description Java .NET CGate API function

Creation of connection ob-
ject

Connection(String set-
tings)

Connection(string set-
tings)

cg_conn_new

Destruction of connection
object

void dispose() void Dispose() cg_conn_destroy

Opening connection void open(String settings) void Open(string settings) cg_conn_open

Closing connection void close() void Close() cg_conn_close

Processing connection
messages

void process(int timeout) void Process(int timeout) cg_conn_process

Receiving connection sta-
tus

int getState() State cg_conn_getstate

Important
Upon the connection termination, an appropriate method must be called to evidently release the connection related resources.

4.3.1. Connection constructor
Initializes the new class instance.

Java syntax:

public Connection(String settings) throws CGateException

C# syntax:

public Connection(string settings)

where:

settings Connection initialization string (see cg_conn_new)

Possible exceptions:

CGateException Connection creation error

4.3.2. 'Connection.dispose' method
Connection resources cleanup is performed by calling the 'dispose()' method.

Java syntax:

public void dispose() throws CGateException

C# syntax:

public void Dispose()

Possible exceptions:

CGateException Connection destruction error

4.3.3. 'Connection.open' method
Connection is opened by calling the 'open()' method.

Java syntax:

Client program interface 14.04.2020

54

public void open(String settings) throws CGateException

C# syntax:

public void Open(string settings)

Possible exceptions:

CGateException Connection opening error

4.3.4. Connection.close method
Connection is opened by calling the 'close()' method.

Java syntax:

public void close() throws CGateException

C# syntax:

public void close()

Possible exceptions::

CGateException Connection closing error

4.3.5. Connection.process method
Connection messages are processed by calling the 'process()' method.

Java syntax:

public int process(int timeout)

C# syntax:

public int Process(int timeout)

Possible exceptions: none.

Return values:

CG_ERR_OK Operation completed successfully

CG_ERR_INVALIDSTATE Invalid connection state

CG_ERR_INTERNAL Internal error

4.3.6. 'Connection.state' property
Connection messages are processed by calling the 'state()' method.

Java syntax:

public int getState() throws CGateException

C# syntax:

public State State { get; }

Possible exceptions:

CGateException Connection closing error

Return values:

CLOSED Connection is closed

ERROR Connection is in the error state

OPEN-
ING

Connection is being opened

ACTIVE Connection is active

4.4. Listener object
The Listener object provides access to the set of listener functions (see Listener).

Client program interface 14.04.2020

55

Description Java .NET CGate API function

Creation of the listener ob-
ject

Listener(Connection conn,
String settings, ISub-
scriber subscriber)

Listener(Connection conn,
string settings)

cg_lsn_new

Destruction of the listener
object

void dispose() void Dispose() cg_lsn_destroy

Opening the listener void open(String settings) void Open(string settings) cg_lsn_open

Closing the listener void close() void Close() cg_lsn_close

Receiving connection sta-
tus

int getState() State cg_lsn_getstate

Receiving listener scheme int getScheme() Scheme cg_lsn_getscheme

Handler installation - Handler -

Important
When the work with subscriber is completed, the dispose() method is to be called, which evidently released the related resources.

4.4.1. Listener constructor
Initializes the new class instance.

Java syntax:

public Listener(Connection conn, String settings, ISubscriber subscriber) throws CGateException

C# syntax:

public Listener(Connection conn, string settings)

where:

conn connection, which the listeneris linked to

settings listener initialization string (see cg_lsn_new)

subscriber user message handler (only Java; in case of .NET, the 'Handler' properties should be used)

Possible exceptions:

CGateException subscription creation error

for Java the subscriber parameter indicates the class instance, which implements the 'ISubscriber' interface.

public interface ISubscriber {

 public int onMessage(Connection conn, Listener listener, Message message);
}

In case of generation of some listener event, for example, arrival of new message or change in the listener state, the object's 'onMessage'
method passed as a parameter subscriber will be called.

The following parameters will be passed:

conn Connection to which a listener is bound

listener The listener, in which the event occured

msg Message

The 'subscriber' parameter is absent for .NET; An extra 'Handler' property is introduced instead of it, which allows installing the message
handler in the most natural way for .NET environment.

4.4.2. 'Listener.dispose' method
Listener resources cleanup is performed through calling the 'dispose()' method.

Java syntax:

public void dispose() throws CGateException

C# syntax:

Client program interface 14.04.2020

56

public void Dispose()

Possible exceptions:

CGateException Listener destruction error

4.4.3. 'Listener.open' method
Attempts to open the listener.

Java syntax:

public void open(String settings) throws CGateException

C# syntax:

public void Open(string settings)

Possible exceptions:

CGateException Listener opening error

4.4.4. 'Listener.close' method
Closes the subscription

Java syntax:

public void close() throws CGateException

C# syntax:

public void close()

Possible exceptions:

CGateException Listener closing error

4.4.5. 'Listener.State' property
Returns the current listener state.

Java syntax:

public int getState() throws CGateException

C# syntax:

public State State { get; }

Possible exceptions:

CGateException Subscriber status acquisition error

Return values:

CLOSED Listener is closed

ERROR Listener is in the error state.

OPEN-
ING

Listener is being opened

ACTIVE Listeber is active

4.4.6. 'Listener.Scheme' property
Returns the current listener data scheme

Java syntax:

public Scheme getScheme() throws CGateException

C# syntax:

public Scheme Scheme { get; }

Client program interface 14.04.2020

57

Possible exceptions:

CGateException Data scheme obtaining error

Returned value is the description of the current listener data scheme, or null, if the listener operates without it.

Important
Listener data scheme is available since the ‘OPEN’ message is received and until the subscriber is closed or switched to the
error mode.

Important
Listener data scheme may change between the two ‘CLOSE’ and ‘OPEN’ events; i.e. after the repeated opening of the listener,
its scheme may differ from the one, that was effective during the recent activity session.

4.4.7. Listener.Handler property
Allows to install ther user message handler of the listener.

C# syntax:

public MessageHandler Handler { get; set; }

User handlers must comply with the following type:

delegate int MessageHandler(Connection conn, Listener listener, Message msg);

, where the following will be sent as parameters:

conn Connection, which the subscriber is linked to

listener The listener, where the event occurred

msg Message

4.5. Publisher object
The publisher object provides access to the publisher set of functions (see Publisher).

Description Java .NET CGate API function

Creation of the publisher
object

Publisher(Connection
conn, String settings)

Publisher(Connection
conn, string settings)

cg_pub_new

Destruction of the publish-
er object

void dispose() void Dispose() cg_pub_destroy

Opening of publisher void open(String settings) void Open(string settings) cg_pub_open

Closing of publisher void close() void Close() cg_pub_close

Publisher state acquisition int getState() State cg_pub_getstate

Publisher scheme acquisi-
tion

int getScheme() Scheme cg_pub_getscheme

Creating a message for
sending

Message newMessage(int
idType, Object id)

Message
NewMessage(MessageFlag
idType, Object id);

cg_pub_msgnew

Sending a message void post(Message msg,
int flags)

Message Post(Message
msg, PublisherFlag flags);

cg_pub_post

Important
When all operations with the publisher are completed, the 'dispose()' method is to be called, which explicitly releases the related
resources.

4.5.1. Publisher constructor
Initializes the new class instance.

Java syntax:

public Publisher(Connection conn, String settings) throws CGateException

Client program interface 14.04.2020

58

C# syntax:

public Publisher(Connection conn, string settings)

where:

conn Connection, which the publisher is linked to

settings Publisher initialization string (see cg_pub_new)

Possible exceptions:

CGateException Publisher creation error

4.5.2. 'Publisher.dispose' method
Publisher resources cleanup is performed through calling the 'dispose()' method.

Java syntax:

public void dispose() throws CGateException

C# syntax:

public void Dispose()

Possible errors:

CGateException Publisher destruction error

4.5.3. Publisher.open method
Attempts to open the publisher.

Java syntax:

public void open(String settings) throws CGateException

C# syntax:

public void Open(string settings)

Possible errors:

CGateException Publisher opening error

4.5.4. Publisher.close method
Closes the publisher

Java syntax:

public void close() throws CGateException

C# syntax:

public void close()

Possible exceptions:

CGateException Publisher closing error

4.5.5. Publisher.State property
Returns the current publisher state.

Java syntax:

public int getState() throws CGateException

C# syntax:

public State State { get; }

Possible exceptions:

CGateException Publisher status acquisition error

Client program interface 14.04.2020

59

Return values:

CLOSED Publisher is closed

ERROR Publisher is in the state of error

OPEN-
ING

Publisher is being opened

ACTIVE Publisher is active

4.5.6. Publisher.Scheme property
Returns the current publisher data scheme.

Java syntax:

public Scheme getScheme() throws CGateException

C# syntax:

public Scheme Scheme { get; }

Possible exceptions:

CGateException Data scheme acquisition error

Returned value is the description of the current publisher data scheme, or null, if the publisher operates without it.

Important
Publisher data scheme may change between the ‘CLOSE’ and ‘OPEN’ events; i.e. after the repeated publisher opening, its
scheme may differ from the one, that was effective during the recent activity session.

4.5.7. Publisher.newMessage method
Creates new message for sending.

Java syntax:

public void newMessage(int idType, Object id) throws CGateException

C# syntax:

public void NewMessage(MessageFlag idType, Object id)

, where:

idType Message identifier type. May take one of the following values:

• KEY_INDEX — id parameter is the unique number of the required message in the scheme

• KEY_ID — id parameter is the unique numerical identifier of the required message in the scheme

• KEY_NAME — id parameter is the name-string of the required message in the scheme

id Message identifier(Integer or String, depending upon the ‘idType’ pararameter value)

Possible exceptions:

CGateException Message creation error

The created message contains a buffer, which size fits the message description in the scheme.

4.5.8. Publisher.post method
Sends the message.

Java syntax:

public void post(Message msg, int flags) throws CGateException

C# syntax:

public void Post(Message msg, PublisherFlag flags)

, where:

Client program interface 14.04.2020

60

msg Messages for sending

flags Message sending flags. At the moment only the ‘NEED_REPLY’ flag is supported, which means the nessecity to receive a reply
to the sent message.

Possible exceptions:

CGateException Message sending error

Sent message is not used after calling the ‘post()’ method and can be deleted or used for re-sending.

Important
Publisher object may only send the messages, created by the same object instance.

4.6. Message object
The Message object provides access to messages.

Description Java .NET CGate API

Destruction of the message ob-
ject

void dispose() void Dispose() cg_pub_msgfree

Acquisition of the message type int getType() Type type field of the cg_msg_t struc-
ture

Acquisition of the data buffer ByteBuffer getData() Data Data field of the cg_msg_t struc-
ture

Acquisition of the debugging
message view

String toString() string ToString() cg_msg_dump

User is responsible for erasing the messages that were created for sending through explicit calling the ‘dispose()’ method. Messages that
user receives to the subscription handler should not be deleted, since such messages are owned by P2 CGate library.

4.6.1. Message.dispose
Message resources cleanup is performed through calling the ‘dispose()’ method.

Java syntax:

public void dispose() throws CGateException

C# syntax:

public void Dispose()

Possible exceptions:

CGateException Message destruction error

4.6.2. Message.Type property
Returns message type.

Java syntax:

public int getType()

C# syntax:

public MessageType Type { get; }

4.6.3. Message.Data property
Return the message data buffer.

Java syntax:

public java.nio.ByteBuffer getData()

C# syntax:

public System.IO.UnmanagedMemoryStream Data { get; }

Data buffer size is available through the respective object call, returned with the property. Buffer format fits the used data scheme.

Client program interface 14.04.2020

61

Data property may return null — it means that the message does not contain data.

4.6.4. Message.toString method
Returns the text representation of the message.

Java syntax:

public String toString()

C# syntax:

public string ToString()

This representation may also be used for debugging purposes.

4.6.5. Message types
For the more comfortable work with P2 CGate, some classes were introduced, which describe the particular message types. Such classes
contain additional information. User may gain access to additional message properties, having converted the object type (cust.), based
upon the analysis of 'Message.Type' properties.

4.6.5.1. OpenMessage object

Describes the messages of CG_msg_OPEN type — opening of the listener.

Object does not contain additional fields.

4.6.5.2. CloseMessage object

Describes messages of CG_msg_CLOSE type — closing of the listener.

Description Java .NET CGate API

Object close reason int getReason() Reason CloseReason() -

4.6.5.3. DataMessage object

Describes the messages of 'CG_msg_DATA' type — data message.

Additional object properties:

Description Java .NET CGate API

Message number in the data
scheme

int getMsgIndex() MsgIndex the msg_index field of the
cg_msg_data_t structure

Numerical message identifier in
the data scheme

int getMsgId() MsgId the msg_id field of the
cg_msg_data_t structure

Message name in the data
scheme

int getMsgName() MsgName the msg_name field od the
cg_msg_data_t structure

Message sender/recipient ad-
dress

string getAddress() Address the addr field of the
cg_msg_data_t structure

User message number int getUserId()/void setUserId(int
val)

UserId the user_id field of the
cg_msg_data_t structure

List of the message fields Value[] getFields() Fields -

Field receiving according to the
name

Value] getField(String name) Field[string] -

4.6.5.4. StreamDataMessage object

Describes the message type ‘CG_msg_STREAM_DATA’ — message stream data.

Additional object properties:

Description Java .NET CGate API

Message number in the data
scheme

int getMsgIndex() MsgIndex the msg_index field of the
cg_msg_streamdata_t structure

Numerical message identifier in
the data scheme

int getMsgId() MsgId the msg_id field of the
cg_msg_streamdata_t structure

Message name in the data
scheme

int getMsgName() MsgName the msg_name field of the
cg_msg_streamdata_t structure

Client program interface 14.04.2020

62

Description Java .NET CGate API

Message number in the stream long getRev() Rev the rev field of the
cg_msg_streamdata_t structure

List of the message fields Value[] getFields() Fields -

Field receiving according to the
name

Value] getField(String name) Field[string] -

4.6.5.5. TnBeginMessage object

Describes messages of the ‘CG_msg_TN_BEGIN’ type — identifies the transaction start for stream data.

Object does not contain additional fields.

4.6.5.6. TnCommitMessage object

Describes messages of the ‘CG_msg_TN_COMMIT’ type — identifying the transaction end for the stream data.

Object does not contain additional fields.

4.6.5.7. P2MQTimeoutMessage object

Describes messages of the ‘CG_msg_P2MQ_TIMEOUT’ type — notifying that the answer latency limit for the sent message exceeded.

Additional object properties:

Description Java .NET CGate API

User message number int getUserId()/void setUserId(int
val)

UserID the user_id field of the
cg_msg_data_t structure_t

4.6.5.8. P2ReplLifeNumMessage object

Describes messages of the ‘CG_msg_P2REPL_LIFENUM’ type — message notifying on the changed living data scheme number.

Additional object properties:

Description Java .NET CGate API

New data scheme life number int getLifeNumber() LifeNumber Field 'life_number' of structure
'cg_lifenumber_t'

Field 'flag' (reserved) - - -

4.6.5.9. P2ReplClearDeletedMessage object

Describes messages of the ‘CG_msg_P2REPL_CLEARDELETED’ type — data range deletion message for the specified message.

Additional object properties:

Description Java .NET CGate API

Table number int getTableIdx() TableIdx the table_idx field of the
cg_data_cleardeleted_t structure

Revision number, data below
which is deleted

long getTableRev() TableRev the table_rev field of the
cg_data_cleardeleted_t structure

4.6.5.10. P2ReplOnlineMessage object

Describes messages of the 'CG_MSG_P2REPL_ONLINE' type - message indicating that a data stream has switched to 'ONLINE' mode.

The object does not contain additional fields.

4.6.5.11. P2ReplStateMessage object

Describes messages of the ‘CG_msg_P2REPL_REPLSTATE’ type — message, containing the data stream state for re-opening.

Additional object properties:

Description Java .NET CGate API

Stream re-opening data String getReplState() ReplState message *data value

