Moscow Exchange

Market Data Multicast
FIX/FAST Platform

User Guide

Moscow Exchange
Version 4.5
January 25, 2017

Contents

1.

OVEBIVIEW ...ttt ettt ettt et ete et et e s e te b e st ese e b e s e st et e e s e st esses et esses e b e st eseesasses e esees e st es s esessessese s asses e s esseseessesessesees e s esseseesesseseesesseseesensens 5
L1, DOCUMEBNE HISEONY ...ttt ettt ettt ettt eete e e te et e easeeseeaseeaseesseaseesseaseeaseesseetsenseesseaseenseesseessenseenseaseensens 5
1.2, SErEAMING Dala.........oieiieieee ettt ettt e et et e b e e teeeteeaseeaseeseeaseeaseeaseaseesseaseeaseesseetseaseesseaseenteesbeeteenbeenreaaeenreas 8
1.3, INCrEMENTAI MESSAGINGooueoeeieieeeeeeeeeee ettt ettt et et e et e eteeaeene et e st e s e es e et e eteeasensensentens et e esseseessessensensenseseaseereereenserseneas 8
LA, FIXTFOIMAL ...ttt ettt et a et e b e ke e bt e bt e et e st e st e st en s e b e ke e bt ea e es e e st entensen b e b eebeeseeseeneentententesenbeesesneenenneas 9
1.5, FAST COMPIESSIONooviieiietieteeite ettt ettt ettt e et e ete et e et e eae et e eaeeeseeaseess e seeaseeaseesseaseesseasseaseesseessenseesseseeaseesseesseaseesseassenseessesssenseenseaseenseas 9
1.6, MUITICASE DEIIVEIY ...ttt ettt ettt et s et eae et e s e st es e et eas et e e b e s ese e b e e s essesses e s e st ese s esseseesesseseese s essaseesensessesessas 9
L7, REBCOVEIY ...t e e et e et e et e et e e ae e eaa e e teeease e st e e ae s eaeeeaseeeteeeaeseseeeaseeeseeease e teeenseeaseeeaseeeteeenseeeaeeeteeeraeeteeerseereens 10

Getting Started with MOEX Market Data FIX/FAST MUlticast Platform............ocoooiimiiieeeeeeeeeeeeeeeeeee e 11
2.1. Basic Scenario — Connect before the Trade DAy SLArted............c.ooi oottt ene e 11
2.2. Connect after the Trad@ DAy STAITEA..............ov oottt ettt ettt eteeteeteettent et e s e eseeaeereeneeneensens 11
2.3. Incremental Feeds A and B ArDItratiONocoioiiiiiioiiceeee ettt ettt ettt et a et et b e se et beseete et esseseebe s eneerenas 12

COrE FUNCHIONAIEYc.ooviiiieeeeeeee ettt ettt et ettt te et et se et e s ese et e b e st esses e s e st ese s ess et e esessessese s essessesessessessesesseseesenne 14
3.1, PlAtfOrM AFCIIEECEUNE.........ooeeeeeee ettt ettt ettt ettt e b et e st et e s e st ese et e s esees e s essessese s esseseesessesseteesesseseasessensesessas 14
3.2, FAST IMPIEMENTATION........ocoiiiieiieieieeeee ettt ettt ettt ettt ettt ete et et e st et e s esseseesessese e s e s essessese s esseseesessesseteasessessasessensesessas 17

32,1 INEFOAUCHION ..ottt ettt b ettt e st s e s bt e s s e s ese e s et e s es e s b b ese s et e st esessesese s esessesese s ese s eseasesese s esessesesene 17

3.2.2 SEOP BIt ENCOAING ..ottt ettt ettt ettt ettt et et st e s et e st ese et e s ese et e e s esses s ese s ensesees e st essese s essessesassessenessesseneesenne 18

3.2.3 IMPLUICIE TAGGINGoceiitiiiieeeieeeeeeeee ettt ettt ettt ettt et e s e as et e e s et essese st e st eseesesseseese s e st essese s enseseesessessese s esseseesessessesessesseneesenne 18

3.2.4 Field ENCOAING OPEIALOISc.oouioiiieiietieieeeteetet ettt ettt ettt ettt ae s e st ese et e s eseeseesessessese s essesses e st essese s esseseesassessesessesseneesenne 19

3.2.5 FAST TEMPIALE.......oeoeeeeeeeeeeeeeeeeee ettt ettt ettt et et et e es e et e et e eseeaeeneene et et et e eseeaseseeasensent et eeteeseereereeneeneans 19

3.2.6 DECOAING OVEIVIEWeoeeeeeeeeeeeeeeeeeeeee ettt ettt ettt et e et et et e et e s easeae et essese et et esseae et e s estese et ensessese s enseseesensessesesensereesenseneeeenne 21

3.2.7 SAMPIE TEMPIALE ...ttt ettt ettt et e ae et et eae et et e st eae et et e st et et et ene et et e st et e et et ere et et enseae et et eneereeee 22

4,

3.3, DALA FEEAS ... e e+ttt e et eeee—eeeteeaeteeaeteeaeeeeaaeeaeteeaaeeaaeeaaeeaaeeaateeaateeaaaeaans 25

3.3.1 INSEFUMENTS FEEA ...ttt ettt b ettt s e st s et et e s e st e s ese s e se st e s es e e s esees et e st eseseesese s esesseseseesesesseseneee 26
3.3.2 Market Statistics, Orders, and Trad@S FEEAS..........c..o oottt ettt et e et e e et eteeeeeneeens 26
3.3.3 MArKEE RECOVEIY FEEUS.........eeoeeeeeeeeeee ettt ettt ettt et e et e et e e te et e eseeaeeaeeae et et et e eteeaeeseessens et et eeteeseeseereeneenens 28
3.3.4 Trading Session Status and HeartBeat MESSAGESc.ooue oottt ettt ettt ettt e eaeeteeaeeaeenens 28
3.3.5 TCP REPIAY.....ceeeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt ettt e et e et e et e etteatentent et et e et e et e ea e ententent et et et et e et e eteeatent et et et e ensereereeneeneens 29
B4, REBCOVEIY ...ttt e e et e et e e ae e et e e te e e ate e st e ease e st e ease e eaeeetsseasseeas s easeeeas e eateeeteeeaseeeaeeeateeetaeeaeeeateeteeeaeeeteeaareereeeareenns 30
3.4.1 Market RECOVEIY OVEIVIEWcooviiiiiiitiieiieteetee ettt ettt ettt et et eas et et e s e st ese et e st ese e s e s eseeseesessessesessessessesesseseese s esseseesassessesessesseneesenne 31
3.4.2 RECOVEINNG DAA — PIOCESSoiiiiieetieeeee ettt ettt et e et et e e b e e as et e esaeese e seesseessesseesseessesseesseessesssensessseseessenssenss 31
343 TCP REPIAY.....eeeeeeeeeeeeeeeeeeeeeeeee ettt ettt et ettt ettt e e s e et e et e etteatentent et et et et e eaeenteatent et et et et e eaeereeatent et et eeteeaeereereeneeneans 33
FIX MESSAQE SPECITICALION.......o.vieeeieieeeeeeee ettt ettt ettt et et ettt et et e st ese et e s eseese et eneesseaessensess et ensessese s esseseesensessesensensesenas 34
4.1, FIX COMPONENE BIOCKSooiieiititiietectet ettt ettt ettt ettt st e te b e st et e et e s e s et e s essessesessessese s esseseesssseseeseasesseseasessensesessas 35
4.1.1 StaNAArd MESSAGE HEAUENc.oouoeieeeeeeeeeeeeeeeeee ettt ettt ettt ettt et et et et et et e st ete et et ese et et essese et et enseseesensesseseesensesenne 35
4.1.2 StANAArd MESSAGE TTAIGKoo oottt ettt ettt et ettt et et e et ete et e s ese et et esseseesentesseseesensesseseasenseseane 36
4. 1.3 INSEFUMIENToeiieiieeeeeee ettt ettt ettt e b et e st e e teeteesees e esses s e s e e s e eseesseseessessessess e s e s e eseessessessensessesseeseeseeseessensessensesessesseeseesnas 36
4.1.4 INSEFUMENE EXEENSION......ccuociiieieiieiei ettt ettt ettt et e et e be et e et e eseeseestessess e s e se s e eseeseessessensessesseeseessessessensessensessesseeseenneneas 39
4.1.5 MAFKEE SEOMENL........c.oiiiitiieeietie ettt ettt ettt et ettt et e s eseete s easese et e s ess et e s essesees e s estese s essesses e st essese s essessesessenseseesesseneesenee 39
4.2, FIX SESSION-LEVEI MESSAGESoooeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt e et e et ete et et eae et et eae et e et e s ese et et easese et ensessese s easeteesensessateeseneessnas 41
A.2. 1 LOGON (A) oottt ettt ettt ettt at ettt se et et a2t et e et et ae et e b e st ete b e s e st et e s eae et e ae At e st eh e s e st eae s e st et e eb et essete s et esees e s ensereeaesseneesenee 41
4.2.2 LOGOUL (5) . ettt ettt ettt et ettt et et et et et eeteeateae et et et et e ete et e eaeeatent et et eeteeteeteeaeere et et et eeteeteeaeereeneenean 42
e B o == [w0 <= | A (0 TSRO 42
4.3. FIX APPICAION-LEVEI MESSAGESo ettt ettt ettt et et et e e e te et et ese et e et et ese et ensessese et easeseetensessateesenseseanas 43

4.3.1 SeCUrity DEFINILION ()c.oeeeieieeeeee ettt ettt ettt ae e s et et eae e s et e st ese et e s ese et e et enseseesensenseseesenserseaenseneesenne 43

432
433
4.3.4
4.3.5
4.3.6

SECUNEY SEALUS () ...eieieeeee ettt ettt ettt et et et e e et e et e e e s e et et ensese et et esees e et ensessesessenseseeseasereeseesenseseesens 44

Trading SESSION STATUS ()voeieeeeeeeeeeeeee ettt e e et eeteete st et et et e et e et e ese et e eseeas e st et eteeteeteeseeseeseensens 46
MarKet Data REGUESE (V) ..ottt ettt ettt et et et et e et e et e eteeteeae e st et et e eteeteeseessensess et eeseeseeseereeseesseneas 47
Market Data - SNAPShOL/FUIl REFIESN (W) ...ttt ettt ettt ettt ens et e s e eneeseeneeneensenean 47
Market Data - Incremental REFFESN (X).......oov oottt ettt ettt ettt e e et e s e eneeseereeneenseneas 56

1. Overview

This document describes the Moscow Exchange (identified as MOEX below) MOEX Market Data Multicast FIX/FAST Platform. This

platform provides the new highly efficient mechanism for delivering MOEX Market Data to market data consumers. The mechanism
utilizes the FIX protocol for messages structure and syntax, FAST protocol for optimization of data streaming, and UDP protocol for
delivering data to multiple users efficiently.

MOEX Market Data Multicast FIX/FAST Platform includes the following aspects: streaming data, incremental messaging, FIX

format, FAST compression, multicast delivery, and recovery.

1.1. Document History

Issue

Date

Description

1.0

May 25, 2011

Original version of this document

2.0

December 12, 2012

Clarifications added

3.3

April 08, 2013

Negotiated and REPO deals — specific fields added

Message format changes to separate SECBOARD, Trading Status, and Trading Period
in individual tags.

Additional fields to support REPO with CCP, Closing Auctions, Discrete Auctions, Dark
pool auctions, T+2 trading data

New FAST compression template

Improved readability and fixing document'’s errata

3.3.1

May 24, 2013

Fixing document errors and adding clarifications per users’ feedback. Removing
unused fields from document.

Compression template has been corrected.

Document has revision marks ON to highlight changes.

3.3.2

September 04, 2013

Updated specifications for units (lots or securities) that are used in trading volumes
(271)

3.3.3

March 26, 2014

Added field, due to changes in the Listing Rules.

4.0.

December 26, 2014

MFIX Market Data Multicast 4.0 code is based on unified with MFIX Transactional
licensed library FIX Antenna C ++ version 2.9.

« Security Status messages are published in a separate ISF channel
and removed from other incremental channels
« FAST template change
» Code change to eliminate temporal crossed book conditions in Order List
channel
» Aggregated Orderbook publishing latency greatly improved and is now equal
to OLR and TLR channels
« Aggregated Orderbook (OBR) channel publishes all price levels
« MDEntryTime (273) and OrigTime (9412) fields are added to the aggregated
Ordebook Channel to indicate the timestamp of last change
» Order List Refresh (OLR) channel contains new DealNumber (9885) field
indicating trade number that caused order change or deletion.
» Market Statistics channel (MSR) contains new entry MDEntryType 269 ='¢’,
CXFlag (5154) indication prevention of uncovered trading for security
» Market Data - Snapshot/Full Refresh (W) contains new field RouteFirst (7944)
that marks first FAST message in a set of messages forming snapshot per
security
« TradingSessionID (336) field was moved outside of repeating group in the
Snapshot/Full Refresh (W) message
* New fields were added to the Security Definition (d) message:
0 QuoteText (9696) — COMMENTS field of native SECURITIES table
o SettlFixingDate (9119) - the closing date of the shareholders' register
o DividendNetPx (9982) — dividend value expressed in settlement currency
« Added new trading period code for the Opening Auction (625=S and
326=119)
« Multiple editings to improve readability, remove unused fields, add

clarifications
* Added link to a file with technical policies and limitations of TCP replay channel
New value added = '3’ (Order exists) for tag 7017 Volumelndicator

July 10, 2015 Platform Architecture section is updated with a brief description of the service FAST
UDP multicast marketdata to participants in the stock and currency markets.

December 19, 2016 MFIX Market Data Multicast version 4.5 is released for public testing. Expected
production launch date is March 13, 2017.

e Aggregated orderbook and aggregated orderbook snapshot (OBR,
OBS) feeds are completely removed. OBR/OBS multicast groups are
reserved for possible future use.

Please use OLR feed to build aggregated data in your application

e FAST templates change

e DealNumber (9885) field is removed from Order List feeds (OLR, OLS)

e RefOrderID (1080) field is added to Trade List feeds (TLR, TLS) to indicate
MDEntryID of OLR order being hit or taken with this trade.

e SendingTime (52) field now contains sending timestamps in
MMDDHHSSmmmmmm format having microsecond precision. Data type is
changed to ulnt64 in all messages.

e Document is updated to reflect the above changes

¢ Additional comments added to the Processing Notes in section 4.3.6

e Network Connectivity Guide section is moved to a separate document

4.5

January 25, 2017

To avoid confusion while adding leading zeroes to SendingTime (52) tag value in
January-September, and to provide uniqueness of values for the nearest 83 years, the
data format in FAST udp multicast 4.5 will be changed to unt64 in a form
yyMMDDHHmMmSSuuuuuu with fixed length of 18 digits, where yy — last pair of digits
in the year number (17 for year 2017), MM — month number, DD — day nhumber, HH —
hour number, mm — number of minutes, SS — number of seconds, uuuuuu — fraction
of a second rounded to microseconds. Each part of formatting template has fixed
length. Zeroes are added where necessary.

New field LastUpdateTime (779) has been added to MSR channel. Field
format is yyMMDDHHmMmMSSuuuuuu as described above. The meaning of the field is a
timestamp of the last processed transaction in the trading system, for which an
incremental update to MSR channel, relative to the previous updated is published.
While comparing data from MSR, OLR, TLR incremental updates you can now detect,
which update contains most recent data by comparing tag 779 value of MSR channel
to timestamps from tags 273 and 9412 in OLR and TLR channels.

FAST compression template is changed for MSR/MSS channels

Listed above changes and comments in document are highlighted in blue.

Corrected description for MDEntryType=f, g

1.2.Streaming Data

Streaming data is the model, which allows one to compose a continuous sequence of information of determinate length into one
message. It is promote to decrease latency and provide very high volume data routing.

1.3.Incremental Messaging

Incremental data model clearly provides less wasteful on resources. Minimum numbers of instructions are needed to update the
book: add, change, delete. An incremental approach sends only necessary data of market events and is intended to significantly reduce

data content.

1.4.FIX Format

MOEX Market Data Multicast FIX/FAST Platform uses FIX message format for messages structure and syntax. Message fields are
delimited using the ASCII 01 <SOH> character. They are composed of a header, a body, and a trailer.
For more information about used messages and tags, see section 4. FIX Message Specification .

1.5.FAST Compression

FAST is a binary compression algorithm used to purpose of the optimization of FIX messages. FAST benefits include reduced
bandwidth and reduced latency. They are achieved at the expense of increased processing time and more complex processing
algorithms. The FAST Protocol uses the following approaches to compact data messages: - implicit tagging;

- field encoding;

- presence map;

- stop bit;

- binary encoding.

These approaches assume that the structures of the transferred messages as well as encoding rules are agreed between the
counter parties. This is usually done via the exchange of machine readable XML-based FAST templates.

For more information about FAST Implementation in MOEX Market Data Multicast, see section 3.2. FAST Implementation.

1.6.Multicast Delivery

Messages are disseminated over the UDP protocol, which allows the Platform to transfer a single packet to multiple destinations
and provides lower than TCP transmission latency.

One FAST encoded FIX message does not occupy more than one UDP packet. This ensures the feed is optimized for bandwidth
efficiency by reducing the impact of multiple network headers and provides support for FAST field encoding to utilize the full suite of
operators including Increment and Copy. These operators will only be used across a set of messages within a single packet.

Currently MOEX Market Data Multicast FIX/FAST Platform does not send more than one FAST encoded FIX message in a UDP
packet, but such possibility can be added in future releases.

To minimize confusion MOEX Market Data Multicast FIX/FAST Platform sends messages from different tables of the Trading
System to different multicast groups.

1.7.Recovery

Rapid recovery is increasingly important as clients must be always in the market. Recovery processes are very useful for recipients
to minimize the probability of a data loss.
MOEX Market Data Multicast FIX/FAST Platform provides data recovery in two ways:
« Market data recovery using market snapshots — suitable for the recovery of a large-scale data loss (i.e. late joiner or major outage);
« TCP Replay of the sent messages — suitable for the recovery of a small-scale data loss (in case when some messages are lost during
the transfer).

2. Getting Started with MOEX Market Data FIX/FAST Multicast Platform

2.1. Basic Scenario — Connect before the Trade Day Started

In general, clients should start listening to MOEX Market Data Multicast FIX/FAST Platform some time before the trading day

starts. This ensures that client will start receiving actual market data without performing any recovery process. The procedure is the
following:

1.

2.
3.

Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity
parameters (feeds multicast addresses, ports, etc.).

Download the FAST template from ftp. See section 3.2.5 for the description of the FAST template.

Start listening Incremental Feed(s) and sequentially apply received data.

2.2.Connect after the Trade Day Started

If client starts listening to MOEX Market Data Multicast FIX/FAST Platform sometime after the trading day started, it should keep

the following procedure:

1.

Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity
parameters (feeds multicast addresses, ports, etc.).Download the FAST template from ftp. See section 3.2.5 for the description of
the FAST template.

Start listening Instrument Definitions feed to get a list of securities. In addition, IDF feed acts as a snapshot channel for the
Instrument Status channel

Start listening required Orders, Statistics, Trades, Instrument Status feeds and queue received data.

Start listening corresponding, Orders Recovery, Statistics Recovery, Trades Recovery. For each instrument, receive snapshot where
values of fields 369 and 83 for a given instrument are greater than minimal values of corresponding fields 34 and 83 in the queued
updates for that instrument.

Apply all updates where tags 34 and 83 are greater than in snapshot for selected instrument.

Continue receiving and normal processing incremental data for selected instrument.

Repeat steps 5-6 for all instruments you need. Alternatively, you can start queuing data until you get full snapshot cycle from
message sequence number 1 to next snapshot cycle message with sequence number 1 and apply all updates for all instruments at
once.

8. Stop listening Recovery Feed(s) when all needed instruments are in sync with incremental feed(s).

2.3.Incremental Feeds A and B Arbitration

Data in all UDP Feeds are disseminated in two identical feeds (A and B) on two different multicast IPs. It is strongly recommended
that client receive and process both feeds because of possible UDP packet loss. Processing two identical feeds allows one to statistically
decrease the probability of packet loss.

It is not specified in what particular feed (A or B) the message appears for the first time. To arbitrate these feeds one should use
the message sequence number found in Preamble or in tag 34-MsgSeqNum. Utilization of the Preamble allows one to determine
message sequence number without decoding of FAST message.

Processing messages from feeds A and B should be performed using the following algorithm:
Listen feeds A and B
Process messages according to their sequence numbers.
Ignore a message if one with the same sequence number was already processed before.
If the gap in sequence number appears, this indicates packet loss in both feeds (A and B). Client should initiate one of the Recovery
process. But first of all client should wait a reasonable time, perhaps the lost packet will come a bit later due to packet reordering.
UDP protocol can’t guarantee the delivery of packets in a sequence.

b=

Example:

Feed A Feed B
34-MsgSegNum = 34-MsgSegNum = 59
59
34-MsgSegNum = 34-MsgSegNum = 60
60
34-MsgSegNum = 34-MsgSegNum = 61
62

34-MsgSegNum

34-MsgSegNum = 62

63
34-MsgSegNum = 34-MsgSegNum = 65
65

Messages received from Feed A and Feed B.

Receive message # 59 from Feed A, process it.

Receive message #59 from Feed B, discard it, because this message was processed before from Feed A.
Receive message # 60 from Feed A, process it.

Receive message #60 from Feed B, discard it, because this message was processed before from Feed A.
Receive message #62 from Feed A, discard it and wait for message #61.

Receive message # 61 from Feed B, process it.

Receive message # 62 from Feed B, process it.

Receive message #62 from Feed A, discard it, because this message was processed before from Feed B.
9. Receive message # 63 from Feed A, process it.

10. Receive message #65 from Feed A, discard it and wait for message #64.

11. Receive message #65 from Feed B, discard it and wait for message #64.

12. Begin recovery process, because gap is detected. Message #64 missed.

A IS o

3.1.Platform Architecture

UDP channels used to transfer market data from MOEX. UDP channels are also used for recovery process, TCP connection is used
to replay sets of lost messages, already published in the one of UDP Channels.
Following feeds are used in the system:
1. Basic:
1.1. Market Data Incremental Refresh feeds.
1.2. Instrument Definition feeds.
2. Recovery:
2.1. Market Recovery feeds.
2.2. TCP Replay sessions.

Trading System

I

MICEX Market Data Multicast FIX/FAST Platform

Slathlici Sty Ot Fibwied Didars: Tradik Fiad Trndii BAETi i]
Jing twmaritad i el wibra) i el fwihin | lewd Tt TLF Repley

MOEX Market Data Multicast broadcast feeds:
» Basic Feeds:

o Market Statistics Feeds (MSR)
= Statistics Feed A
= Statistics Feed B
o Active Orders List Feeds (OLR)
»= Orders Feed A
»= Orders Feed B

o Trades List Feeds (TLR)
» Trades Feed A
= Trades Feed B
o Instrument Status Feeds (ISF):
= Status Feed A;
= Status Feed B;

« Recovery Feeds:

0 Market Statistics Recovery Snapshots Feeds (MSS)
= Statistics Recovery Feed A
= Statistics Recovery Feed B

o Active Orders List Recovery Snapshots Feeds (OLS)
» Orders Recovery Feed A
» Orders Recovery Feed B

o Trades List Recovery Snapshot Feeds (TLS)
= Trades Recovery Feed A
» Trades Recovery Feed B

« Instruments Definitions Feeds (IDF), also used as recovery feed for ISF feed:
o Instruments Definitions Feed
A
o Instruments Definitions Feed
B
Besides publishing market data in UDP channels, MOEX Market Data Multicast FIX/FAST Platform can accept TCP requests from
clients. The replay of data from the following feeds can be requested over TCP connection:
o Statistics Feed (MSR)
o Orders Feed (OLR)
o Trades Feed (TLR)
o Instrument Status Feed (ISF)

There are some restrictions for market data transfer over TCP connection. Effective numeric values can be found in the
TCP_Replay_Limits.pdf file located at ftp://ftp.moex.com/pub/FAST/ASTS/config/ folder.

Moscow Exchange runs two instances of FAST UDP multicast market data feed. This allows switching to the available feed in case
of issues with one of the instances. Both instances are statistically identical in publishing latency.

e FAST templates, server-side software, data contents, and MDEntryID fields identical for both services.
e FAST message sequence numbers for ASTS_FAST and ASTS_FAST2 services do NOT match.

3.2.FAST Implementation
This part contains the description of the implementation FIX Adapted for STreaming (FAST) protocol.

3.2.1Introduction

The FIX Adapted for STreaming (FAST) Protocol has been developed as part of the FIX Market Data Optimization Working Group.
FAST is designed to optimize electronic exchange of financial data, particularly for high volume, low latency data dissemination.

FAST is a data compression algorithm that significantly reduces bandwidth requirements and latency between sender and receiver.
FAST works especially well at improving performance during periods of peak message rates. FAST extends the base FIX specification and
assumes the use of FIX message formats and data structures. FAST is a standalone specification that uses templates to encode an
instance of an application type, or part thereof, as a stream of bytes, and to inform the receiver which operations to use in decoding.

MOEX Market Data Multicast Platform distributes FIX messages which are encoded in FAST. The Preamble is found before the
FAST encoded message, and contains the sequence number (Fig 1).

ftp://ftp.moex.com/pub/FAST/ASTS/config/
ftp://ftp.moex.com/pub/FAST/ASTS/config/

Sequence BMAP Template

Message
number ID &
A . Fa
” . ..,
4 bytes N bytes N bytes
\, FAN . J
W W
Freamble FAST-message
Figure 1

3.2.2 Stop Bit Encoding

An important property of the FAST transfer encoding is the use of stop bit encoded entities. In FAST, a stop bit is used instead of
FIX’s traditional <SOH> separator byte. Thus 7 bits of each byte are used to transmit data and the eighth bit is used to indicate the end
of a field.

3.2.3 Implicit Tagging

In traditional FIX messages each field takes the form “Tag=Value<SOH>" where the tag is a number representing which field is
being transmitted and the value is the actual data content. The ASCII <SOH> character is used as a byte delimiter to terminate the field.
For example: 35=x|268=3 (message header)

279=0]269=2|270=9462.50|271=5|48=800123|22=8 (trade)

279=0]269=0|270=9462.00|271=175|1023=1|48=800123|22=8|346=15 (new bid 1)

279=0]269=0]270=9461.50|271=133|1023=2|48=800123|22=8|346=12 (new bid 2)

FAST eliminates redundancy with a template that describes the message structure. This technique is known as implicit tagging as
the FIX tags become implicit in the data. A FAST template replaces the tag=value syntax with “implicit tagging” as follows:

« tag numbers are not present in the message but specified in the template

- fields in @ message occur in the same sequence as tags in the template

« the template specifies an ordered set of fields with operators.

3.2.4 Field Encoding Operators

FAST functions as a state machine and must know which field values to keep in memory. FAST compares the current value of a
field to the prior value of that field and determines if the new value should be constant, default, copy, delta (integer or string),
increment, or tail.

Some operators rely on a previous value. A dictionary is a cache in which previous values are maintained. All dictionary entries are
reset to the initial values specified after each UDP packet. Currently, MOEX sends one message per UDP packet. In this realization delta
is not needed.

A field within a FAST template will generally have one of the Field Operators: Constant, Default, Copy, Delta, Increment.

A field within a FAST template will have one of the following Data Types: String, Signed Integer, Unsigned Integer, byte Vector,
and Decimal.

3.2.5 FAST Template

A FAST template corresponds to a FIX message type and uniquely identifies an ordered collection of fields. The template also
includes syntax indicating the type of field and transfer decoding to apply. A template is communicated between MOEX and client
systems in XML syntax using the FAST v1.1 Template Definition Schema maintained by FIX. The XML format is human- and machine-
readable and can be used for authoring and storing FAST templates. Session Control Protocol (SCP) will not be used.

A template consists of Field Instructions that define the fields contained in the message. Field Instructions specify the field hame,
tag number, data type, field operator, and presence attribute that indicate if a field is optional or mandatory.

A sample market data template is shown below (Fig. 2). The syntax is standard XML and can be parsed using a variety of open
source tools. Valid template syntax is determined by the FAST Template Schema which is available in the FAST v1.1 specification.

Figure 2

183
104
1485
ld=
TE%
108
189
3zl
1%
T
3]
114
115
116
LT
118
3l o]
TZzo

rei

(S
3B
S T S RS T

LE

R T € T B =B = S
=

i
L Ly R OB ORI R ORXORYN

R

et

il 1]
L34
13k
i3s
13T
1as
133
T40
Tal
TaZ
T4z
Tad
Tas
T445

<l—— Msrket Datz — Incremental Refresh —%
<template pame="X" id="6&" xmlns="http:/ www.{ixprotocol iorg/na/ffast/td/f1.1">
<gtring neme="HezsageTypea" 1id="3">
<=gomnatant velue="X"/>
</string>
<gtring neme="applWVerID® id="1128"><cnpyf><fstring>
<string name="SenderConpID" id="43"s»<copy/></atring>
“ulnt3Z name="HagSeqlum" id="34"*<increment/>< /ulnt3z>
<ulntfd neme="SHendingTime" id="62"><copy >/ ulntéd>
<byteVecter name="lessageEncoding” id="347" presence="opticnal'"¥<default/></byteVectors>
<gzeguence name="CGrouplCEntries">
T"HoelDEntriea"™ id="2868"/%
"HOUpdatefotion” id="278"><copy/></ulnt3z>
<g3tring name="HDEntryType" id="263" presence="optional"><copy/></string>

<length name

<ulInt3Z name

<byteVector neme="WDEntry¥ID" id="Z78" presence="optional"><ccpy/*></byteVector>
<byteVector neme="Symbcl" id="558" presence="optional <copy/*</byteVector>
<int3Z name="Eptieq" id="83" presence="cptional"><copy/></int3Z>

<decimal name="MDEntryPx" 1d="Z70" presence="cptional”»<copy/></decimal>

<decimal neme="MDEntrySize" id="271" presence="gptional"»<eopy/¥</decimal>

=ulnt3Z neme="HDEntryDate" id="272" presenc

optichal"»=copy/ </ ulnt3Z>

<ulnt3Z name="HOEntryTime" id="273" presence="cptional"><copy/></ulnt3Z>

<byteVector neme="TradingSeasionID" id="336" presence="optional"»<copy/></byteVectorr
<byteVector neme="QucteCondition” id="276" presence="opticnal"><copy/ /> /byteVector>
<byteVector name="TradeCondition” id="277" presence="opticnal"><copy ¥« /byteVector>
<ulInt3Z name="OpenCloseSettlefFlag" id="ZB6" presence="optionmal"><default/></ulnt3Z>
<decimal neme="NetChgPrevlay" id="451" presence="opticnal"><copy/*</decimals

<decimal nawe="Yield" id="23&" presence="gpticnal"s><copy>< S decimal>

<decimal name="AccruedInterestAmt” id="5384" presence="optional”r<copy/*</ decimal>
<decimal name="ChyFrounWAPrice” id="5510" presence="opticnal"><ccpy/>< decimal>
<decimal name="ChglpenIntereszt” id="53511" presence="scpticnal"><copy/></decimal>
<int32 neme="TotalNumDETrades"” id="6139" presence="optional"*<ccpy/></int33>

<decimal name="TradeValus" id="6143" presence="gptichal"»<copy/></decimal>

<int3Z neme="0fferlbOr" id="5%168" prese
<int3Z neme="BidNbOr" id="91¢&%" presence=

="optional"s<copy/></ int3Z>

optional " ><copy/*</int3E>
<decimal neme="ChgFromSettlmnt” id="3750" presence="opticnal"><copy/></decimal>
<int3Z name="SunmltyOfBest" id="10503" preszence="gpticnal"><copy/></int3z>

=

<gtring name="0OrderSide” id="10504" presence="cptional"><copy/></string>
<3tring name="0OrdStatua" 1d="10505" presence="optional"><copy/></string>
<decimal name="0OrdBalance" id="1050&" rpresence="optionzl"><copy/>< decimal>
<decimal name="0OrdValue" id="10507" presence="cpticnal"><copy/></decimal>
<decimal neme="HinCurrPx" id="10509%" presence="gptional"»<copy/></decimal>
i =ulnt3i name="HinCurrPxChgTine" id="10510" presence="opticnal"><copy/></ ulntiz>
</ Zsaguence>
</templater

3.2.6 Decoding overview

The FAST template contains the instructions to decode and reconstruct compressed message data into the FIX format and also
supports repeating groups (sequences) that allow a single message to convey multiple instructions (i.e. book update, trade, high/low,
etc.). Decoding process include following steps:

Encoded FIX/FAST
message

 J
Network Transport Layer

¥

Transfer Decoding

Build FIX message

Y

Process FIX Message)

g & & & 6
g
:

- W W W

Figure 3
» Transport.

Client System receives encoded FAST message.
« Transfer decoding.

Transfer decoding is the initial step that converts data from the FAST 7-bit binary format. It

includes:

» Identify template;

= Extract binary encoded bits;

= Map bits to fields per template.
 Field decoding.

Field decoding is the second part of the decompression process that reconstructs data values according to template-
specified operations. Field decoding operations are assigned per field within the template; decoding reinstates data as indicated by
the template.

 Build FIX message.
It includes:
» Decoding begins with the identification of the Pmap bit for each field.
= The encoded FAST 7-bit binary values are obtained.
= Then the encoded FAST 7-bit binary values are de-serialized based on the data type specified in the template.
» The decoder maintains the state of prior values for each field throughout decoding and applies them for fields having
operators of Delta, Copy, or Increment.
= Obtain fully decoded values.
* Process FIX message.

3.2.7 Sample Template

Table 1

Template Syntax Use and Description
1 <template name="X" id="6" Provides the template name and template identifier.
xmins="http://www.fixprotocol.org/ns/fast/td/1.1">
2 <string hame="MessageType" id="35"> Field instruction for MessageType defined as a string with identifier = 35
<constant value="X" /> corresponding to the FIX tag number. MessageType has a constant field
</string> operator with a value of X which indicates the FIX message type—in this case
Market Data Incremental Refresh.

10

11

12

13

14

15

<string name="ApplVerID" id="1128"><copy/></string>

<string name="SenderCompID" id="49"> <copy/></string>

<ulInt32 name="MsgSegqNum" id="34"> <increment/> </ulnt32>

<ulnt64 name="SendingTime" id="52"><copy/></ulnt64>

<byteVector name="MessageEncoding"

id="347"presence="optional"> <default/> </byteVector>

<sequence name="GroupMDEntries" >

<length name="NoMDEntries" id="268"/>

<ulInt32 name="MDUpdateAction" id="279"
presence="optional"><copy/></ulnt32>

<string name="MDEntryType" id="269"
presence="optional"><copy/></string>

<byteVector name="MDEntryID" id="278"
presence="optional"><copy/></byteVector>

<byteVector name="Symbol" id="55"
presence="optional"><copy/></byteVector>

<int32 name="RptSeq" id="83"
presence="optional"><copy/></int32>
<decimal name="MDEntryPx" id="270"
presence="optional"><copy/></decimal>
<decimal name="MDEntrySize" id="271"
presence="optional"><copy/></decimal>

Field instruction for ApplVerID defined as a string with an identifier = 1128
corresponding to the FIX tag number. ApplVerID has a copy field operator.
Field instruction for SenderComplID defined as a string with identifier = 49
corresponding to the FIX tag number. SenderComplID has a copy field
operator.

Field instruction for MsgSeqNum defined as an unsigned integer with identifier
= 34 corresponding to the FIX tag number. MsgSeqNum has an increment
field operator.

Field instruction for SendingTime defined as an unsigned integer and with
identifier = 52 corresponding to the FIX tag number. SendingTime has a copy
field operator.

Field instruction for MessageEncoding defined as a byte vector and with
identifier = 347 corresponding to the FIX tag number. MessageEncoding has a
default field operator.

Sequence instruction demarks the beginning of the MDEntries repeating group.
The sequence includes a length field called *"NoMDEntries’ that specifies the
number of repeating groups present in the message.

Field instruction for MDUpdateAction defined as an unsigned integer and
identifier = 279 corresponding to the FIX tag number. MDUpdateAction has a
copy field operator.

Field instruction for MDEntryType which is defined as a string and has an
identifier = 269 which corresponds to the FIX tag number. MDEntryType has a
copy field operator.

Field instruction for MDEntryID which is defined as a byte vector and has an
identifier = 278 which corresponds to the FIX tag number. MDEntryID has a
copy field operator.

Field instruction for Symbol which is defined as a byte vector and has an
identifier = 55 which corresponds to the FIX tag number. Symbol has a copy
field operator.

Field instruction for RptSeq defined as a signed integer with identifier = 83
corresponding to the FIX tag number. RptSeq has a copy field operator.

Field instruction for MDEntryPx defined as a decimal with identifier = 270
corresponding to the FIX tag number. MDEntryPx has a copy field operator.
Field instruction for MDEntrySize defined as a decimal with identifier = 271
corresponding to the FIX tag number. MDEntrySize has a copy field operator.

16

17

18

19

20

21

22

23

24

25

26

<uInt32 name="MDEntryDate" id="272"
presence="optional"><copy/></ulnt32>

<ulnt32 name="MDEntryTime" id="273"
presence="optional"><copy/></ulnt32>

<byteVector name="TradingSessionID"
id="336"presence="optional"><copy/></byteVector>

<byteVector name="QuoteCondition" id="276"
presence="optional"><copy/> </byteVector>

<byteVector name="TradeCondition" id="277"
presence="optional"><copy/></byteVector>

<byteVector name="0OpenCloseSettIFlag"
id="286"presence="optional"><copy/> </byteVector>

decimal nhame="NetChgPrevDay" id="451"
presence="optional"><copy/></decimal>

<decimal name="AccruedInterestAmt"
id="5384"presence="optional"> <copy/> </decimal>

<decimal name="ChgFromWAPrice" id="5510"
presence="optional"><copy/></decimal>

<int32 name="TotalNumOfTrades" id="6139"
presence="optional"><copy/></int32>

<decimal name="TradeValue" id="6143"
presence="optional"><copy/></decimal>

Field instruction for MDEntryDate defined as an unsigned integer and identifier
= 272 corresponding to the FIX tag number. MDEntryDate has a copy field
operator.

Field instruction for MDEntryTime defined as an unsigned integer and identifier
= 273 corresponding to the FIX tag number. MDEntryTime has a copy field
operator.

Field instruction for TradingSessionID which is defined as a byte vector and
has an identifier = 336 which corresponds to the FIX tag number.
TradingSessionID has a copy field operator.

Field instruction for QuoteCondition which is defined as a byte vector and has
an identifier = 276 which corresponds to the FIX tag number. QuoteCondition
has a copy field operator.

Field instruction for TradeCondition which is defined as a byte vector and has
an identifier = 277 which corresponds to the FIX tag number. TradeCondition
has a copy field operator.

Field instruction for OpenCloseSettlFlag which is defined as a byte vector and
has an identifier = 286 which corresponds to the FIX tag number.
OpenCloseSettlIFlag has a copy field operator.

Field instruction for NetChgPrevDay defined as a decimal with identifier = 451
corresponding to the FIX tag number. NetChgPrevDay has a copy field
operator.

Field instruction for AccruedInterestAmt defined as a decimal with identifier =
5384 corresponding to the FIX custom tag number. AccruedInterestAmt has a
copy field operator.

Field instruction for ChgFromWAPrice defined as a decimal with identifier =
5510 corresponding to the FIX custom tag number. ChgFromWAPrice has a
copy field operator.

Field instruction for TotalNumOfTrades defined as a signed integer with
identifier = 6139 corresponding to the FIX custom tag number.
TotalNumOfTrades has a copy field operator.

Field instruction for TradeValue defined as a decimal with identifier = 6143
corresponding to the FIX custom tag number. TradeValue has a copy field
operator.

27

28

29

30

31

32

33

<decimal name="Yield" id="236"
presence="optional"><copy/></decimal>
<int32 name="0fferNbOr" id="9168"
presence="optional"><copy/></int32>

<int32 name="BidNbOr" id="9169"
presence="optional"><copy/></int32>

<string name="0rderSide" id="10504"
presence="optional"><copy/></string>

<string name="0rderStatus" id="10505"
presence="optional"><copy/></string>

<decimal name="MinCurrPx" id="10509"
presence="optional"><copy/></decimal>

<uInt32 name="MinCurrPxChgTime"
id="10510"presence="optional"><copy/></ulnt32>

3.3.Data Feeds

Field instruction for Yield defined as a decimal with identifier = 236
corresponding to the FIX tag number. Yield has a copy field operator.

Field instruction for OfferNbOr defined as a signed integer with identifier =
9168 corresponding to the FIX custom tag number. OfferNbOr has a copy field
operator.

Field instruction for BidNbOr defined as a signed integer with identifier = 9169
corresponding to the FIX custom tag number. BidNbOr has a copy field
operator.

Field instruction for OrderSide defined as a string with an identifier = 10504.
OrderSide has a copy field operator.

Field instruction for OrderStatus defined as a string with an identifier = 10505.
OrderStatus has a copy field operator.

Field instruction for MinCurrPx defined as a decimal with identifier = 10509.
MinCurrPx has a copy field operator.

Field instruction for MinCurrPxChgTime defined as an unsigned integer and
identifier = 10510. MinCurrPxChgTime has a copy field operator.

The use of incremental FIX market data messaging in combination with FAST compression produces highly optimized feeds which
are distributed in UDP channels. Each Feed is transferred over separate multicast-address. Feeds have the following structure:

o Statistics Feeds

= Statistics Feed A

= Statistics Feed B
o Orders Feeds

= Orders Feed A

= Orders Feed B
o Trades Feeds

= Trades Feed A

* Trades Feed B
o Instrument Status Feeds

= Instrument Status Feed A

» Instrument Status Feed B
o Instruments Feeds
= Instruments Definitions Feed
A
= Instruments Definitions Feed
B
In Feeds A and B the equal market data information is sent. It provides low probability of packets loss, and reduce the need in
recovery processes.

3.3.1 Instruments Feed

Instruments Definitions Feed A/B provides the security main parameters in a Security Definition (d) message and changes to the
definition and/or identity of the security. In this feeds FIX messages encoded to FAST are sent repeatedly with fixed time interval. One
FIX message contains information about one security.

Message example:

8=FIXT.1.1|9=400|35=d|1128=9|34=1551|460=5|423=2|911=1572|49=MOEX|55=VRSBP|48=RUO00AODPG75|22=4|461=EPXX

XX|167=PS]|
107=Voronezh EnergoSbyt.Comp(pref)|15=RUB|120=RUB|5217=2-01-55029-
E|5385=FOND|969=0.001|5508=0.4|7595=18716678|350=54|351="BopoHex.3Heproct.komn"OAO
an|5382=20|5383=BopoH3HC6N|52=2011050308:29:32.968|870=2|871=27|872=3|871=8|872=0]|1310=1|561=1]|1309=1|336=SMAL|
10=000|

Note: each security symbol (55) may be traded in several trading boards that differ by rules. Tag 336 indicates <Board>. There
may be multiple different Board values for each security symbol. Please treat each combination of tags 55 and 336 in Security definition
as a separate entity with separate stream of market data updates.

3.3.2 Market Statistics, Orders, and Trades Feeds

The following market data is also distributed in separate feeds:

e Statistics Feed A/B — market statistics, changes in SECURITIES table.
Statistics Feeds also include Add, Change, and Delete blocks. Entry types
are:

'0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value);

'4" (Opening Price);

'5' (Closing Price);

'7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance)

'B' (Trade Volume, expressed in number of securities);
'J' (Empty book);

'N' (Session high bid);

'O' (Session low offer);

'Q' (Auction Clearing Price);

‘W'(Closing auction price);

‘c’(Closing auction volume);

‘e’(Prevention of uncovered trading for security)

i' (Last bid price);

j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

" (Market price 2); on FX market — FX fixing price as calculated between 11:59 and 12:00 Moscow time.
'm' (Market price); on FX market — FX fixing price

'o' (Official open price);

'p' (Official current price);

'q"' (admitted quote); On FX market: international FX fixing price
'r' (Official close price);

'v' (Total bid volume);

'w' (Total offer volume);

's' (Dark pool Auction price)

'x' (Dark Pool Auction

volume)

y'(Accrued interest amount per the unit of security at current date, expressed in rubles)

'u' (Duration);.
Orders Feed A/B — changes in ORDERS table.

Orders Feeds also include Add, Change, and Delete blocks. Entry types are: '0' (Bid), '1' (Offer), 'f’

(buy market order in closing auction), ‘g’(sell market order in closing auction), ‘]’ (Empty book)

e Trades Feed A/B — changes in TRADES table.
Trades Feeds include only Add block (MDUpdateAction(279) =0) and custom entry type MDEntryType (269) = 'Z' (Trade
List). ')’ — no trades per instrument.
The data is transmitted in a form of FIX-messages Market Data — Incremental Refresh (X) encoded into FAST format. Each
message can include the updates of several financial instruments.
Instrument Status feeds A/B — changes in security trading status which are published as Security Status (35=f) messages.

3.3.3 Market Recovery Feeds

Each Market Recovery feed (Statistics, Orders, Trades, Instrument Status) sends the Market Data Snapshot / Full Refresh
(MsgType (35) = W) messages encoded to FAST. Each message contains the information about one security. Information in Market Data
Snapshot / Full Refresh message includes status of the connection with the market (TradSesStatus (340) tag) and changes in status of a
security (MDSecurityTradingStatus (1682) tag).

Market Recovery feeds should be used for recovery purposes only. Once the client system has retrieved recovery data, it
recommended stopping listening to the Market Recovery feeds.

3.3.4 Trading Session Status and HeartBeat messages

Trading Session Status (h) message is used to represent connection status with appropriate MOEX market. When status of
connection changed this message is sent into UDP channel.

If no updates are produced or in pauses between that snapshot cycles UDP multicast feeds periodically publish HeartBeat
messages.

Trading Session Status and HeartBeat messages increment the feed message sequence number counter (34).

3.3.5 TCP Replay

The TCP replay component allows requesting a replay of a set of messages already published in one of UDP Channels.

The request is submitted by FIX Market Data Request message (35=V) with a range of sequence numbers and UDP Channel

identifier.

After establishing TCP-session, client should send the FIX Logon message, always with sequence number 1. It is strongly
recommended to use SenderComplD strings that allow client identification at firm level. When requesting the lost data client should
specify the channel ID. Channel IDs can be found in MOEX Market Data Multicast FIX/FAST Platform configuration file available on ftp.
They are OLR (for Order List feed), TLR (for Trade List feed), MSR (for Market Statistics feed), ISF (Instrument Status feed).

Only single data request is allowed per TCP/FIX session. After processing the request, the server sends requested FAST messages
as tcp data stream. The length of the message in TCP stream can be found in 4-bytes number before each message being transmitted:

Message s Template
MAP Message
length 1D 8
W W W R
4 byres N bytes Nbytes
W W
Message length FAST-message

After sending all data the server initiates termination of session by sending FAST encoded Logout message and then waits for FIX
Logout
reply. After receiving reply the TCP connection is closed. It is an abnormal condition is client does not send confirming Logout within
timeout period.

TCP Replay should be used in case of dropping small numbers of messages in both feed copies.

To limit the server load and network utilization by tcp replay traffic, the following technical limitations and policies are applied:

* Number or requested messages is limited. An attempt to request more messages will be rejected and followed by immediate
logout message

* Number of simultaneous TCP sessions per source IP address is limited. An attempt to establish more TCP sessions is rejected
- Number of TCP connections per day per source IP address is limited. Connection attempts after exceeding the limit are
rejected - Total number of simultaneous TCP sessions is limited. Extra sessions are rejected.

« Limited waiting time for request and logout is applied. The session is terminated if waiting timeout is exceeded.

Effective numeric values can be found in the TCP_Replay_Limits.pdf file located at ftp://ftp.moex.com/pub/FAST/ASTS/config/ folder.

3.4.Recovery

MOEX Market Data Multicast FIX/FAST Platform disseminates Market Data in all feeds over two UDP subfeeds: Feed A and Feed B.
In Feeds A and B the identical messages are sent. It lowers the probability of packets loss and provides the first level of protection
against missed messages.

Sometimes, messages may be missed on both feeds, requiring a recovery process to take place. Message loss can be detected
using the FIX message sequence numbers (tag MsgSeqNum (34)), which are also found in the Preamble. The message sequence
number is an incrementing number; therefore, if a gap is detected between messages in the tag MsgSegNum (34) value, or the
Preamble sequence number, this indicates a message has been missed. In addition, tag RptSeq (83) can be used to detect a gap
between the messages at the instrument level. In this case client system should assume that market data maintained in it is no longer
correct and should be synchronized to the latest state using one of the recovery mechanisms.

MOEX Market Data Multicast FIX/FAST Platform offers several options for recovering missed messages and synchronizing client
system to the latest state. Market Recovery process together with Instruments Replay Feed is the recommended mechanism for
recovery. TCP Replay provides less performance mechanism which is recommended only for emergency recovering of a small amount of
lost messages when other mechanisms cannot be used for some reason. Instrument level sequencing and natural refresh can be utilized
to supplement the recovery process. Notes:

« We strongly recommend that client systems process both the A and B Incremental UDP feeds. UDP Feed A and UDP Feed B
provide the first level of protection against missed messages.
« We recommend Market Recovery as a primary recovery option.

ftp://ftp.moex.com/pub/FAST/ASTS/config/
ftp://ftp.moex.com/pub/FAST/ASTS/config/

3.4.1 Market Recovery Overview

This recovery method is preferable to use for a large-scale data recovery and for late joiners. Recovery feeds contains Market
Data - Snapshot/Full Refresh (W) messages.

The sequence number (LastMsgSeqNumProcessed(369)) in the Market Data - Snapshot/Full Refresh (W) message corresponds to
the sequence number (MsgSeqNum(34)) of the last Market Data - Incremental Refresh (X) message of a given instrument in the
corresponding feed. Note that these values are different for different instruments.

Instrument level sequence number (RptSeq(83)) in Market Data - Snapshot/Full Refresh (W) message correspond to the sequence
number (RptSeq(83)) in the MDEntry from the last Market Data - Incremental Refresh (X) message. Thus tag MsgSeqNum(34) shows the
gap at the messages level, tag RptSeq(83) shows the gap at the instrument level.

After value of RptSeq(83) tag from Market Data - Incremental Refresh (X) becomes more than value of RptSeq(83) tag from
Market Data - Incremental Refresh (X), market data becomes in sync with market.

After value of MsgSeqNum(34) from Market Data - Incremental Refresh (X) message becomes more than value of tag
LastMsgSeqNumProcessed(369) from Market Data - Snapshot/Full Refresh (W) message for a given instrument, market data becomes for
this instrument becomes in sync with market.

Message sequence numbers start from #1 in Market Data - Snapshot/Full Refresh (W) messages in each cycle.

First Market Data - Snapshot/Full Refresh (W) message in a set of messages for an instrument in Recovery Feeds is marked by tag
RouteFirst (7944)=Y.

Last Market Data - Snapshot/Full Refresh (W) message in a set of messages for an instrument in Recovery Feeds is marked by
tag LastFragment (893) ="Y". So the snapshot is considered as obtained as soon as the message with tag LastFragment (893) =Y’ is
received and all snapshot messages with lower sequence numbers are received.

Clients should keep queuing a real-time data until all missed data is recovered. The recovered data should be applied prior to the
queued data.

The steps during Recovery process corresponds to the steps 4 — 7 from point 2.2.

Since clients have retrieved recovery data, it is recommended to stop listening Market Recovery feeds.

3.4.2 Recovering Data — Process
The recovering data process should be applied to affected feeds only. Unaffected feeds can be processed as usual. The process
can follow two paths: queuing current data while recovering or processing current data while recovering.

3.4.2.1.1 Queuing
This process implies the queuing the Incremental Market Data from Incremental Feeds while receiving Market Data Snapshots
from Recovery Feeds. In order to avoid an excessive humber of queued messages, it is recommended to process snapshots and apply
the applicable incremental feed as the snapshots arrive.
1. Identify Feed(s) in which the client system is out of sync.
2. Listen to and queue the Incremental Market Data from the affected Feed(s).
3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s), receive and apply snapshots.
4. Verify that all snapshots have been received for a given Market Recovery feed, using one of the following approaches:
a. Message sequence numbers in each loop of snapshots start from 1. So to determine the end of the loop one can wait
until the next message with 34-MsgSeqNum = 1 arrives.
b. Snapshots in the Recovery Feeds are sent in the same order as Security Definitions in Instruments Feed. Tag 7944
RouteFirst marks the first message in a set of messages forming snapshot per instrument. Tag 893-LastFragment in the
W-message indicates whether it is the last fragment in a set of messages forming snapshot per instrument. Receiving
all messages per instrument from tag 7944=Y to 893=Y ensures getting full snapshot for the instrument.

5. Apply all queued incremental data in the sequence, where
a. tag 34-MsgSeqNum (or the Preamble sequence number) is greater than the lowest value for tag 369-
LastMsgSeqNumProcessed for a given instrument;
OR

b. tag 83-RptSeq from the Market Data Incremental — Refresh (X) message is greater than the lowest value for tag 83-
RptSeq from the Market Recovery feed for a given instrument.
6. Continue normal processing

3.4.2.1.2. Concurrent Processing
This process implies the possibility to resume normal processing of an instrument while other affected instruments are still being
recovered.

1. Identify Feed(s) in which the client system is out of sync.

2. Listen to the Incremental Market Data from the affected Feed(s) and optionally attempt a natural refresh.
3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s)

4 4. For each instrument:

a. compare tag 369-LastMsgSeqNumProcessed on the Market Recovery feed to tag 34-MsgSegNum (or the Preamble
sequence number) on the Incremental Market Data feed and verify that the value for tag 34-MsgSegNum is not lower;
OR
b. compare tag 83-RptSeq on the Market Recovery feed to tag 83-RptSeq on the Incremental Market Data feed and verify
that the value for tag 83-RptSeq on the Incremental Market Data feed is not lower.
5. Continue normal processing

3.4.2.1.3. Instrument Level Sequencing
Market Data Incremental Refresh messages contain instrument sequence numbers (tag 83-RptSeq), in addition to message
sequence numbers (tag 34-MsgSeqNum). Every repeating group instance of a market data entry contains an incremental sequence
number (tag 83-RptSeq) that is associated with the instrument for which the data is present in the block.
Client systems can keep track of the instrument sequence number (tag 83-RptSeq) for every instrument by inspecting incoming
data and determin whether there is a gap in the instrument sequence number.
. If there is a gap in the instrument sequence number, it indicates that data was missed for the instrument when message
loss occurred.
. If there is no gap, the data can be used immediately, and it also indicates that the book for this instrument still has a
correct, current state.

3.4.2.1.4. Natural Refresh
The client system must track the state of the book at all times with the FIX Market Data Incremental Refresh messages. It is
possible, though not guaranteed, that a set of these book update messages can be used to construct the current, correct state of a book
without prior book state knowledge. This process is called Natural Refresh. Prior to the beginning of a natural refresh, the entire book
should be emptied. Natural refresh assumes no prior knowledge of a book state.

3.4.3 TCP Replay

If market data from Statistics, Orders, and Trades Feeds was missed, it can be recovered over the TCP historical replay
component using the sequence number range. TCP Replay is a low performance recovery option and should be only used if other
options are unavailable or for a small-scale data recovery. A number of messages which can be requested by client during TCP
connection are limited.

TCP replay include the following:

1. Establish TCP connection with MOEX Market Data Multicast.

2. Send FIX Logon(A) message with sequence number 1 to the server. After successful authorization the server sends the FAST-
encoded Logon(A) message. 553 (username) and 554 (password) here is one of the pairs user0\pass0, userl\passl, user2\pass2
Example: 8=FIXT.1.1|9=94|35=A|49=SimpleClient|56=MOEX|34=1|52=20150530-
11:01:44|98=0|108=10|553=user0|554=pass0|1137=9|10=078|

3. Send Market Data Request (V) message with:
a. Tag ApplID (1180) - the channel ID (as specified in a server configuration file available on ftp: OLR, TLR, or MSR).

b. Range of sequence numbers - ApplBegSeqNum(1182) and ApplEndSeqNum (1183) tags.
Example: 8=FIXT.1.1 | 9=91 | 35=V | 1128=9 | 49=SimpleClient | 56=MOEX | 34=2 | 52=20150530-11:01:44 | 1180=0LR | 1182=1000 |
1183=1400 | 10=077|
The server processes only a single valid Market Data Request (V). If the request is correct, the server sends FAST
messages according to requested sequence numbers.

After server responses, the server sends FAST Logout (5) message.
If the request is incorrect, the server sends FAST Logout (5) message with reject reason.
If no request is received within maximum waiting interval, then the server sends FAST Logout (5) message with logout reason

After sending Logout message the server waits for confirming logout.
TCP connection is closed after receiving confirming logout or after maximum waiting time is reached.

Note: closing connection without sending confirming logout is considered as abnormal situation.

4. FIX Message Specification

This part contains the description of FIX 5.0 SP2 protocol messages, component blocks and fields which are supported by MOEX
Market Data Multicast.

This specification is based on FIX 5.0 SP2 standard for application-level messages, FIXT 1.1 for session-level messages
(http://fixprotocol.org/) and adapted to MOEX's purposes. It's assumed that users have basic knowledge about FIX standard.

Only messages, component blocks and fields which are described in this document are supported by MOEX Market Data Multicast.
Note that all fields which are required or conditionally required by FIX 5.0 SP2 standard but absent in MOEX Interface specification are
optional and will be ignored by MOEX. All field values which are valid according to FIX 5.0 SP2 standard but aren’t described in this
document will be considered as invalid and incoming messages with such values will be rejected.

4.1.FIX Component Blocks

4.1.1 Standard Message Header
Table 2

Field name Valid values

8 BeginString Y String (8) 'FIXT.1.1' Identifies beginning of new message and protocol version. Always
unencrypted, must be first field in message.

9 BodyLength C Length Message length, in bytes, forward to the CheckSum field. Always
unencrypted, must be second field in message. Should be present if
message sends in TCP Recovery service.

35 MsgType Y String (10) Defines message type. Always unencrypted,should be the third tag in the
message.

1128 AppVerID Y String (1) ‘9" (FIX50SP2) Specifies the service pack release being applied for application-level
messages. Always unencrypted. Should be placed next to 35 tag.

49 SenderCompID Y String (12) Assigned value used to identify the firm sending a message.

Always unencrypted.

If this message is sent to MOEX TCP replay server, SenderCompID may
contain an arbitrary string.

56 TargetCompID Y String Assigned value used to identify a receiving firm.

Always unencrypted.

If this message sent from MOEX, then it will contain USERID assigned to
a trader by MOEX.

http://fixprotocol.org/
http://fixprotocol.org/
http://fixprotocol.org/

If this message sent to MOEX, then it should contain the MOEX server
identifier. This parameter is given by MOEX

34 MsgSegNum Y SegNum Integer message sequence number.

52 SendingTime Y ulnt64 Time of message transmission (in UTC time zone) in the following format:
yyMMDDHHmMmSSuuuuuu with fixed length of 18 digits, where yy — last
pair of digits in the year number (17 for year 2017), MM — month number,
DD — day number, HH — hour number, mm — number of minutes, SS —
number of seconds, uuuuuu — fraction of a second rounded to
microseconds. Each part of formatting template has fixed length. Zeroes
are added where necessary.

Example: 52=170125080709000030 is for a timestamp of
2017-01-25 08:07:09.000030 in human-readable format.

Please note that this format is also used in FIX messages of TCP replay
channel.

347 MessageEncoding N String(11) 'UTF-8' (Unicode) Type of message encoding (non-ASCII characters). Required if any
"Encoding" fields are used except ASCII

4.1.2 Standard Message Trailer

Table 3
Field name Valid values Comments

S

g

o
Y

10 CheckSum String(3) Three byte, simple checksum.

Always unencrypted, always last field in message.

4.1.3 Instrument
Table 4

Field name

Valid values

Comments

55 Symbol String(12) Ticker symbol. The MOEX internal instrument
identifier, SecCode.

Note: an instrument with a given SecCode may be
traded in several trading boards (SecBoard). You
should use each Symbol (55)+TradingSessionID
(336) combination as an individual security with its
own order book and list of trades.

48 SecurityID String Security identifier value of SecurityIDSource (22)
type. (for example CUSIP, SEDOL, ISIN etc).

22 SecurityIDSource String '4" (ISIN) Identifies class or source of the SecurityID (48)
value. Field is obligatory if Security ID (48) is
specified.

460 Product int '3' (CORPORATE); Indicates the type of product the security is

'4" (CURRENCY); associated with.
'5' (EQUITY);
'6' (GOVERNMENT);
'7' (INDEX);
'9' (General collateral certificate)
'10' (MORTGAGE)
'11' (MUNICIPAL);
'12' (OTHER);
'13"' (FINANCING).
461 CFICode String Indicates the type of security using ISO 10962

standard, Classification of Financial Instruments (CFI
code) values.

167 SecurityType

541 MaturityDate

224 CouponPaymentDate
223 CouponRate

107 SecurityDesc

350 EncodedSecurityDesclLen
351 EncodedSecurityDesc

5217 StateSecurityID
5382 EncodedShortSecurityDesclLen

N

=2

String

LocalMktDate
LocalMktDate

Price
String
Length

data

String
Length

CORP' (Corporate Bond);

'FOR' (Foreign Exchange Contract);
'CS' (Common Stock);

'PS' (Preferred Stock);

'EUSOV' (Euro Sovereigns);'

'BN' Bank Notes;

'MF' Mutual Fund

'MUNI' (Municipal bonds);

'RDR' — (Russian depositary receipt)
'ETF' — (Exchange traded fund);
'COFP' (Certificate Of Participation):
'XCN' (Extended Comm Note);
'STRUCT" (Structured Notes);
'WAR' (Warrant)

'GCD' (General collateral certificate)

Indicates type of security.

Maturity date for bonds
Date interest is to be paid.

Value of the due coupon payment, expressed in the
currency of settlement

Security description. This tag contains security
description in English on MOEX.

Byte length of encoded (non-ASCII characters)
EncodedSecurityDesc (351) field.

Russian language (non-ASCII characters) name for
the security. Encoded format is specified via the
MessageEncoding (347) field. If used, the ASCII
(English) representation should also be specified in
the SecurityDesc (107) field.

State Securities Identification Number.

Byte length of encoded (non-ASCII characters)
EncodedShortSecurityDesc (5383) field.

5383

EncodedShortSecurityDesc

N data

Short (non-ASCII characters) security name in
Russian language. Field encoding format specified
via the MessageEncoding (347) field. in message
header.

5556

BaseSwapPx

N Price

Base SWAP price.

5558

BuyBackPx

N Price

Base price for yield calculation. If indicated then the
yield is calculated using this price. If defined, the
field BuyBackDate appears in stream.

5559

BuyBackDate

N LocalMktDate

Date for yield calculation. If indicated then the yield
is calculated for this date

4.1.4 Instrument Extension

Field name

Table 5

Valid values Comments

870 NolnstrAttrib N NumInGroup Number of repeating InstrAttribType (871) entries.

=> InstrAttribType N int '8' (Coupon period); The code to represent the type of instrument

871 '27' (Instrument Price Precision). attribute. Required if NoInstrAttrib (870) > 0.

=> InstrAttribValue N String Attribute value appropriate to the InstrAttribType (871)
872 field.

4.1.5 Market Segment

Field name

Table 6

Valid values Comments

1310 NoMarketSegments N NumInGroup Number of Market Segments on which a security may
be traded.
=> 561 RoundLot N Qty The trading lot size of a security.

=> 1309
=> =>
336

= =
625

=> =>
326

NoTradingSessionRules | N

TradingSessionID

TradingSessionSubID

SecurityTradingStatus

N

N

NumInGroup

String(4)

String

int

'NA' — No trading

'0" — Opening period

'S' - Opening auction period

'C' — Closing period

'N' — Normal trading period

'L' — Closing auction period

'T' — Discrete auction period

'D' — Dark pool auction period

'E' — Trading at the closing auction
price period

'A’ - Auction: Order entry phase

‘a’ - Auction: Trade conclusion phase
‘b’ - Auction: Bookbuilding phase,
orders are locked

'p’- Auction: After auction trade phase

18 — Not available for trading
118 — Opening period

119 - Opening auction period
18 — Trading closed

103 - Closing period

2 — Break in trading

17 — Normal trading

102 - Closing auction

106 — Dark pool auction

Allows trading rules to be expressed by trading session.

Identifier for trading board. Used to represent
SECBOARD. Note: an instrument with a given SecCode
may be traded in several trading boards (SecBoard).
You should use each Symbol (55)+TradingSessionID
(336) combination as an individual security with its own
order book and list of trades.

Indicates the trading period

Notes:

* Period is empty before the trading start and
after the trading is closed.

» Switching between periods typically involves a
short stop in trading, in which the period is not
defined (625=NA)

* The sequence and schedule of periods depends
on board code and on market conditions as
defined by the Exchange Trading rules.

* Period value of this component block indicates a
period that is running at the start of Security
definition
publishing cycle. Security status updates that
come after Security definitions publishing cycle
start should replace tag 625 values from
Security definitions feed.

Trading status for a security

Notes:

« a break in any period is indicated by 326=2 and
period identifier in tag 625.

« Not available for trading and Trading Closed are
different technological states in the Trading
system. However they both disable trading
activity and thus have equal values of tag 326.

107 — Discrete auction
120 — Trading at Closing auction price

» Trading status value of this component block
indicates a trading statsus that existed at the
start of Security definition publishing cycle.
Security status updates that come after Security
definitions publishing cycle start should replace
tag 625 values from Security definitions feed.

=>=>9680 | OrderNote

Char

Level of listing

4.2.FIX Session-Level Messages

4.2.1 Logon (A)

Logon message from customer to MOEX:

Field name

Valid values

Table 7

Comments

<Standard Message
Header>
553 Username

554 Password
1137 DefaultApplVerID

Y*
Y*

String
String
String

'9' (FIX50SP2)

MsgType = 'A'

Userid or username.
User password.

Specifies the service pack release being applied, by default,
to message at the session level.

Note: it is strongly recommended to identify your firm via meaningful string in SenderComplID field of a standard message header

in FIX TCP replay sessions.

Logon message from MOEX to customer:

Table 8

Field name

Valid values

Comments

<Standard Message Y MsgType = 'A'

Header>

108 HeartBtInt Y int Heartbeat interval (seconds).

1137 DefaultApplVerID Y String '9" (FIX50SP2) Specifies the service pack release being applied, by default,
to message at the session level.

4.2.2 Logout (5)

Field name

Valid values

Comments

Table 9

<Standard Message Y MsgType = '5'
Header>
58 Text N String Logout reason.

4.2.3 Heartbeat (0)

Field name

\ET RYETES

Comments

Table 10

<Standard Message Y
Header>

MsgType = '0'

4.3. FIX Application-Level Messages

4.3.1 Security Definition (d)
Table 11

Field name Valid values Comments

<Standard Message Header> | Y MsgType = 'd'

911 TotNumReports Y int Total number of Security Definition messages in a cycle.

component block Y The <Instrument> component block contains all the fields

<Instrument> commonly used to describe a security or instrument.

component block N The <InstrumentExtension> component block identifies additional

<Instrument Extension> security attributes that are more commonly found for Fixed
Income securities.

15 Currency N Currency Currency in which security is denominated

component block <Market N Contains all the security details related to listing and trading the

Segment> security, including its trading status and trading period as they

were at the start of Security Definitions publishing cycle. This
allows late joiners to get current security trading state if they have
missed earlier Security status (35=f) messages.

120 SettiCurrency N Currency Currency code of settlement denomination.
423 PriceType N int '1' (Percentage); Code to represent the price type.
2" (Per unit). Note: for REPO with CCP this tag value is 1, but indicates the
REPO rate, not the price of underlying security (bond or share)

64 SettiDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in YYYYMMDD
format

For Equities and FX in orders driven market: indicates settlement
date For Equities in quote driven market (negotiated): indicates
default

settlement date. Actual date may vary and is indicated for each
trade in the Trade List feed

For FX swaps: indicates settlement date for first trade.

5385 MarketCode N String Code of the market where instrument is traded.

Note: MarketCode indicates a group of trading boards
(SECBOARDS) with similar trading rules. MarketCode value may
coincide with <Market> value of tag 335 but have a different

purpose.
969 MinPriceIncrement| N float Minimum price increase for a given exchange-traded Instrument.
5508 FaceValue N Amt Face value of security.

5850 OrigIssueAmt N Int Number of placed securities in the issue

7595 NoShareslIssued N Qty The number of issued shares.

9119 SettlFixingDate N Date The record date for shareholders

9982 DividendNetPx N Numeric Dividends,in the currency of payments

9696 QuoteText N Char Comments

4.3.2 Security Status (f)
Security Status messages indicate the changes in the current Trading status and period for a security. Security Status messages are published in a separate
ISF channel.
Note: to get current Security Status in a scenario of late join, please use the Instrument Definition feed as a snapshot channel for the fields 326 and 625, or
use TCP replay channel.
Table 12

Field name Valid values Comments

<Standard Message Header> | Y

55

336

625

=<

Symbol

TradingSessionID N

TradingSessionSubID | N

String

String

String

'NA' — No trading

'0' — Opening period

'S' - Opening auction period

'C' — Closing period

'N' — Normal trading period

'L' — Closing auction period

'T' — Discrete auction period

'D' — Dark pool auction period

'E' — Trading at the closing auction price
period

'A’ - Auction: Order entry phase

‘a’ - Auction: Trade conclusion phase

‘b’ - Auction: Bookbuilding phase, orders
are locked

‘p’- Auction: After auction trade phase

MsgType = 'f'

Ticker symbol. The Moscow Exchange internal instrument
identifier, SecCode.

Note: an instrument with a given SecCode may be traded in
several trading boards (SecBoard). You should use each
Symbol (55) +TradingSessionID (336) combination as an
individual security with its own order book and list of trades
and orders.

Identifier for trading board. Used to represent SECBOARD.
Note: an instrument with a given SecCode may be traded
in several trading boards (SecBoard). You should use each
Symbol

(55)+TradingSessionID (336) combination as an individual
security with own order book and list of trades.

Indicates the trading period

Notes:

* Period is empty before the trading start and after the
trading is closed.

» Switching between periods typically involves a short
stop in trading, in which the period is not defined
(625=NA)

+ The sequence and schedule of periods depends on
board code and market conditions as defined by the
Exchange Trading rules.

326 SecurityTradingStatus| N int '18' — Not available for trading Trading status for a security
'118' — Opening period

'119' - Opening auction period Notes:

'18' — Tradiljg cIosE-:‘d » abreak in any period is indicated by 326=2 and
'103' - Closing period period identifier is in tag 625.

'2' — Break in trading

:17' - Normal trading + Not available for trading and Trading Closed are
.102. — Closing aUCtIOF} different technological states in the Trading system.
106" — Dark pool auction However they both disable trading activity and thus

'107' — Discrete auction

have equal values of tag 326.
'120' — Trading at Closing auction price

5509 AuctionIndicator N Boolean "Y' (Yes); Indicates that the primary distribution auction is being held for
'N' (No). the security. Primary distribution auction data is currently not
published in the feed.
Notes:

» 5509=N for ALL other auction types.
» Boolean values are encoded in FAST messages as
binary integers: 1 for Y, and 0 for N.

4.3.3 Trading Session Status (h)
Table 13

Field name \EUT RYETES Comments

<Standard Message Y MsgType = 'h'
Header>

336 TradingSessionID Y String Identifier for Trading Session is used to represent
SECBOARD.

340 TradSesStatus Y int 100" (Connection to MOEX market was The state of the trading session. Informs about the
established); '101' (Lost connection to MOEX); connection state between the MOEX Market Data
'102' (Connection to MOEX market was Multicast FIX/FAST Platform and the trading system.
established, trading system wasn't restarted); Note: Receiving the very unlikely message 340=103
'103' (Connection to MOEX market was means that Trading system has been started from
established, trading system was restarted). scratch and you must remove all feed data on your

side and start over.
58 Text N String Free format text string.
4.3.4 Market Data Request (V)
Table 14

Field name Valid values Comments

<Standard Message Header> | Y MsgType = 'V'

1180 ApplID N String OLR, TLR, MSR, ISF The channel ID.

1182 AppIBegSegNum N SegNum The beginning range of application sequence numbers.

1183 ApplEndSegNum N SeqNum The ending range of application sequence numbers. If Market Date Request

is for one message then ApplBegSeqNum(1182) =
ApplEndSeqNum(1183).If the request is for all messages after a specified
message (but no more than a maximum number of sending messages),
then ApplEndSeqNum(1183) = '0' (infinity).

4.3.5 Market Data - Snapshot/Full Refresh (W)
Table 15

Field name Valid values Comments

<Standard Message Header> Y MsgType = 'W'

83 RptSeq Y int Sequence number of a message within report
series. Value equal to the RptSeq(83) in Market
Data - Incremental Refresh (X) message at the
time when the snapshot for a given instrument
has been prepared.

369 LastMsgSeqNumProcessed | N SegqNum Value equal to the MsgSegNum (34) from the
last Market Data - Incremental Refresh (X)
message which was published at the time of a
snapshot for a given instrument has been
prepared.
Note: this field value may be different for
different instruments within the same snapshot
publishing cycle.

340 TradSesStatus N int '100' (Connection to MOEX market was The state of the trading session. Informs
established); about the connection state between the MOEX
'101' (Lost connection to MOEX); Market Data Multicast FIX/FAST Platform and
'102' (Connection to MOEX market was established, the trading system. _
trading system wasn't restarted); Note: Receiving the very unlikely message

'103' (Connection to MOEX market was established, 340=103 means that the Trading system has
trading system was restarted). been started from scratch and you must

remove all feed data on your side and start
over.

55 Symbol Y String Ticker symbol. The MOEX internal instrument
identifier, SecCode.
Note: an instrument with a given SecCode
may be traded in several trading boards
(SecBoard). You should use each Symbol
(55)+TradingSessionID (336) combination as
an individual security with its own order book
and list of trades.

893 LastFragment N Boolean 'N' (Not Last Message); Indicates whether this message is the last in a
"Y' (Last Message). sequence of messages in the snapshot for a
security.

Boolean values are encoded in FAST messages
as binary integers: 1 for Y, and O for N.

7944

1682

5509

RouteFirst

MDSecurity TradingStatus

AuctionIndicator

N

N

N

Boolean

int

Boolean

'Y' (the first message in a set of messages

forming a snapshot for an instrument);

'N' (Not the first message in a set of messages

forming a snapshot for an instrument).

18 — Not available for trading
118 — Opening period

119- Opening auction period
18 — Trading closed

103 — Closing period

2 — Break in trading

17 — Normal trading

102 — Closing auction

106 — Dark pool auction

107 — Discrete auction

120 — Trading at Closing auction price

'Y' (Yes);
'N' (No).

Indicate that a message is the first in a set
of messages forming a snapshot for an
instrument.

Current trading status for a security

Notes:

« abreak in any period is indicated by
1682=2 and period identifier is in
tag 625

« Not available for trading and Trading
Closed are different technological
states in the Trading system.
However, they both disable trading
activity and thus have equal values of
tag 326.

» Switching between trading periods
typically involves a short stop in
trading in which the period is not
defined (625=NA)

» The sequence and schedule of
periods and trading status values
depends on SecBoard code (336) and
on market conditions as defined by
the Exchange Trading rules.

Indicates that the primary distribution auction
is being held for the security. Primary
distribution auction data is currently not
published in the feed.

Notes:

» 5509=N for ALL other auction types.

» Boolean values are encoded in FAST
messages as binary integers: 1 for Y,
and 0 for N.

451

336

268

=> 269

NetChgPrevDay

TradingSessionID

NoMDEntries

MDEntryType

PriceOffset

String

NumInGroup

char

'0" (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value \ Fixings);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session (main or additional) High
Price);

'8' (Trading Session (main or additional) Low
Price);

'9' (Trading Session (main or additional) VWAP
Price);

'A' (Imbalance), expressed in number of
securities;

'B' (Trade Volume), expressed in number of
securities;

'J' (Empty book);

'N' (Session (main or additional) high bid);
'0' (Session (main or additional) low offer);

Net change from previous day’s closing price
vs. last traded price.

Identifier for trading board. Used to represent
SECBOARD.

Note: an instrument with a given SecCode
may be traded in several trading boards
(SecBoard). You should use each Symbol
(55)+TradingSessionID (336) combination as
an individual security with its own order book
and list of trades.

Number of entries in Market Data message.

Type Market Data entry.
Notes:

+ The availability of this field’s values
depends on market type (FX or
Equities), SecBoard code (336) and
the Exchange trading rules.

« Different feeds have subsets of
possible values, depending on the
data contents.

« Empty Book (269=1]) indicates no data
for a security. Empty Book message
may be generated market-wide,
which indicates that you should
remove all previously collected data
and start over.

« Meaning of some values depends on
market type
(FX or Equities) and corresponding
trading rules

'Q' (Closing auction Clearing Price), the clearing
volume (271) is expressed in lots;

'W' (Opening/Closing auction price);

'c' (Opening/Closing auction volume), expressed
in number of securities;

'e' (prevention of uncovered trading for security)
'f' (market in opening auction period/ closing
auction buy order);

'g' (market in opening auction period/ closing
auction sell order);

'i' (Last bid price);

j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

'I'" (Market price 2); on FX market — FX fixing price
as calculated between 11:59 and 12:00 Moscow
time. 'm' (Market price); on FX market — FX fixing
price

'0' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international
FX fixing price;

'r' (Official close price);

'v' (Total (for main or additional session) bid
volume);

'w' (Total (for main or additional session) offer
volume);

's' (Dark pool Auction price)

'x' (Dark Pool Auction volume), expressed in
number of securities

'y' (Accrued interest amount per the unit of
security at current date, expressed in rubles)

'u' (Duration);

'Z' (Trades list).

Off-book trading boards do not have
data in OrderList snapshot feed
(OLS).

Off-book trading boards may have
market statistics data for a Symbol
taken from on-book trading boards for
this Symbol (market, current, WAP
prices, etc.)

The set of field values may be
extended following the Trading
system updates. It is recommended to
allow in your code ignoring unknown
values of this field, and linked to such
entry values of other fields, until the
new field meaning can be supported
by your application.

Indexes are published in Market
statistics (MSR and MSS) channels for
EQ market only. For FX market there
are fixing values in 269=3 (also
MSR\MSS channels).

Previous trading day values are
indicated by additional tag 286

=> 278

=> 270

=> 271

=> 272

=> 273

MDEntryID

MDEntryPx

MDEntrySize

MDEntryDate

MDEntryTime

N String
C Price
C Qty

N UTCDateOnly

N UTCTimeOnly

Unique Market Data Entry identifier.
Notes:

» For trades (269=z) entries, this tag
contains a string with Exchange trade
number that is equal to trade numbers
in all trading interfaces

* For OrderList (OLR, OLS channels), it
contains a string identifier of Add Order
(279=0) update for an order, NOT
directly tied to the Exchange Order
number in trading interfaces.

+ MDEntryID value for new Orders are
growing but not always for a number

up

Price of the Market Data Entry.
Conditionally required if MDEntryType (269) is
notin ('A’, 'B', '1").

Quantity represented by the Market Data
Entry.

Conditionally required if MDEntryType (269) is
In (IO'I |1'I I2'I 'A'I 'B|I 'Q'I 'f‘l 'g', 'VII 'W' .

Note: For 269="A", 'B', this field value is
expressed in number of securities. For all
other values of tag 269, this field value is
expressed in number of lots.

Date of Market Data Entry.

Time of Market Data Entry.

=> 625 | TradingSessionSubID

=> 276

=> 277

=> 286

=> 40

=> 236

QuoteCondition

TradeCondition

OpenCloseSettlFlag

OrdType

Yield

N

String

MultipleValueString

MultipleValueString

MultipleValueString

Char

Percentage

'NA' — No trading

'0' — Opening period

'S' - Opening auction period

'C' — Closing period

'N' — Normal trading period

'L' — Closing auction period

'T" — Discrete auction period

'D' — Dark pool auction period

'E' — Trading at the closing auction price period

'A’ - Auction: Order entry phase

‘a’ - Auction: Trade conclusion phase

'b’ - Auction: Bookbuilding phase, orders are
locked

'p’- Auction: After auction trade phase

'C' (Exchange Best)

'R' (Opening Price) ;

'AJ' (Official Closing Price);
'98' (Minimum value);

'99' (Maximum value).

'4" (Entry from previous business day)

'1' (Market)

Indicates the trading period

For updates and snapshots, Period value
indicates a period for an event reported, not
necessarily the currently running period.

In Trades feeds tag indicates a period when
trade was completed

Space-delimited list of conditions describing a
quote.

Space-delimited list of conditions describing a
trade.

Flag that identifies a market data entry.

Order type.

Used when MDEntryType (269) ='f','g"
Note: Market in Closing Auction orders are
activated and published in Order List feed in
Closing Auction period.

Matching occurs at the end of closing auction.
Other market orders are not published in the
feed because they never stay active.

Yield percentage.

=> 64 SettlDate N* LocalMktDate Specific date of trade settlement
(SettlementDate) in YYYYMMDD format
Notes:
For trades — settlement date of regular trade
or negotiated deal.
For REPO trades — settlement date of the first
part of REPO.

=> 44 Price N Price REPO rate for REPO trades.

=> 423 | PriceType N int '1' percentage Indicates price type (REPO rate in percentage)
for REPO trades.

=> 5154 | CXFlag N Boolean 'Y' (Yes); Prevention of uncovered trading for security

'N' (No). (269="¢e")

=> 5292 | BidMarketSi ze N Int Total volume of market buy orders calculated
for currently expected auction price,
expressed in number of securities.
Used in closing auctions

=> AskMarketSize N Int Total volume of market sell orders, expressed

5293 in number of securities used in closing
auctions.

=> AccruedInterestAmt N Amt Amount of accrued interest.

5384

=> SettlType N Char MOEX settlement code for trades (269=z)

5459

=> ChgFromWAPrice N PriceOffset Indicates the change from previous day's

5510 weighted average price vs. last traded price.

=> BuyBackPx N Price For REPO deals - REPO value calculated in

5558 roubles for the current date
(used in Trade List (269=z) feed).

=> BuyBackDate N LocalMktDate For REPO deals - the date of the second

5559 part of REPO (used in Trade List (269=z)

feed). Published as REPO buyback
duration REPOTERM+ <Settledate>

5677

=>
5791

=> 9168
=> 9169
=> 9412

10504

Repo2Px

TotalVolume

EffectiveTime

StartTime

TotalNumOfTrades

TradeValue

Volumelndicator

OfferNbOr
BidNbOr
OrigTime

OrderSide

Price

Amt

UTSTimestamp

UTSTimestamp
int
Amt

char

int
int

int

char

'0' (No orders)

'1' (Total orders value is less than N*)
'2' (Total orders value is greater than N*)
'3' (Order exists)

Value of the 2nd (buy-back) REPO leg,
expressed in settlement currency (used in
Trade List (269=z) feed).

Total volume.

Used when MDEntryType (269)='f', 'qd'
Market in auction buy orders have money
volume instead of lot quantity. Other orders
use lot quantities.

Order activation time. The order or price level
with an activation time specified is not active
until that time.

Auction start time. Used for Dark pool and
Discrete auctions

Total number of trades.

Trade Value.

Volume indicator of Dark Pool auction active
orders. Used when MDEntryType(269)= 'v' or
'w'.

N (variable)*- the large order volume factor
as determined by the Exchange

Number of sell orders.
Number of buy orders.

Indicates the microseconds portion of the
transaction’s registration time at the Matching
engine. Should be added to tag’s 273 value to
get microsecond precision timestamp. The
field is available in Orders and trades
channels.

Side of aggressive order in TLR feed.

=> 1080 | RefOrderID N char In TLR feed: MDentryID of OLR order entry for
an order being hit or taken.

=> OrderStatus N char '0' (Active); Describes the current state of order. Orders in

10505 T' (Order activation time hasn't come yet). T status are not active and not used in
matching.

=> MinCurrPx N Price Minimum current price. Used to determine

10509 condition when the short sales should be
prohibited.

=> MinCurrPxChgTime N UTCTimeOnly Time when minimum current price was

10510 changed.

4.3.6 Market Data - Incremental Refresh (X)

Important processing notes:

Publishing massive updates in traffic-shaped feeds may take some time.
Incremental updates are not always published per events in the trading system. Some intermediate states in very fast sequences of changes per security may
be skipped and only resulting change is published in MSR or OLR feeds. TLR feed always contains all Add Trade messages.

OLR feed does not publish updates for orders with zero lifetime: I0C, Market, FOK, and completely filled at registration time. OLR feed may skip publishing
Add and Delete updates for an order if its active state duration is less than approximately 100 microseconds.

MSR feed updates have LastUpdateTime timestamp with the meaning of last processed transaction time, after which the update was generated. It is
guaranteed that MSR update with the LastUpdateTime equal to the maximum timestamp in tags 273 and 9412 of OLR or TLR update message corresponds to
result of the same event in the trading system. By comparing timestamps (tags 779, 273 and 9412) in updates for MSR, OLR, TLR messages you can
determine, which updates contain most recent data.

For massive events per an instrument like hitting multiple trades by single order, MSR feed is statistically published earlier than bulk OLR and TLR data in the
majority of cases. However, the MSR precedence is not guaranteed. Using LastUpdateTime you can determine that MSR is definitely published ahead of OLR
and TLR data and use MSR data for preliminary estimate of OLR and TLR changes.

For example, consider you receive MSR update with 779=170125080709000030 and with best sell price jumping up by 5 price steps. You have OLR state as
of 273=2017-01-25 08:07:08 1 9412=999900. To get new OLR state estimate for a time of 273=2017-01-25 08:07:09 and 9412=30 you can remove all sell
orders with prices less than new best sell price. You can correct estimate later after receiving OLR update. You can also estimate total trades count, volume,
and last trade data for an instrument by MSR update if tag 779 value is greater than the last received TLR feed timestamp in tags 273 and 9412.

For channels where add, change and delete MDUpdateActions are possible (Orders) the correct state is achieved after processing the whole set of repeating
group entries in the message.

FAST message length is limited by the network MTU size, current limitation is 1300 bytes. For massive updates, this results in splitting the data per several
FAST messages.

Valid values Comments

<Standard Message Header> Y MsgType = X'

779 LastUpdateTime N ulnt64 For MSR channel the meaning of the field is a
timestamp of the last processed transaction in the
trading system, for which an update is generated as a
change from the previous state.

While comparing data from MSR, OLR, TLR incremental
updates you can now detect, which update contains
most recent data by comparing tag 779 value of MSR
channel to timestamps from tags 273 and 9412 in OLR
and TLR channels.

Field format is yyMMDDHHmMmSSuuuuuu with fixed
length of 18 digits, where yy — last pair of digits in the
year number (17 for year 2017), MM — month number,
DD — day number, HH — hour number, mm — number of
minutes, SS — number of seconds, uuuuuu — fraction of
a second rounded to microseconds. Each part of
formatting template has fixed length. Zeroes are added
where necessary.

Example: 52=170125080709000030 is for a
timestamp of 2017-01-25 08:07:09.000030 in human-
readable format.

268 NoMDEntries Y NumInGroup Number of entries in Market Data message.

=> 279

=> 269

MDUpdateAction

MDEntryType

Y

Y

ulnt

char

'0' (New);

'1' (Change);

'2' (Delete).

'0" (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value\Fixings);

'4" (Opening Price);

'5' (Closing Price);

'7' (Trading Session (main or additional session)
High Price);

'8' (Trading Session (main or additional session)
Low Price);

'9' (Trading Session (main or additional session)
VWAP Price);

'A' (Imbalance), expressed in number of securities
'B' (Trade Volume, expressed in number of
securities);

'J' (Empty book);

'N' (Session (main or additional session) high bid);
'0" (Session (main or additional session) low offer);
'Q' (Closing auction clearing Price), the clearing
volume (271) is expressed in lots;

'W' (Opening/Closing auction price);

'c' (Opening/Closing auction volume), expressed in
number of securities;

'e' (prevention of uncovered trading for security)
'f' (market in opening auction period/ closing
auction buy order);

'g' (market in opening auction period/ closing
auction sell order);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

Type of Market Data update action.

Type Market Data entry.

Notes:

The availability of this field’s values depends on
market type (FX or Equities), SecBoard code
(336) and the Exchange trading rules.

Different feeds have subsets of possible values,
depending on the data contents.

Empty Book (269=1J) indicates no data for a
security. Empty Book message may be
generated market-wide, which indicates that
you should remove all previously collected data
and start over.

Meaning of some values depend on market
type (FX or Equities) and corresponding trading
rules

Off-book trading boards do not have data in
Orderbook Snapshot (OBS) and OrderList
snapshot feeds (OLS).

Off-book trading boards may have market
statistics data for a Symbol taken from on-book
trading boards for this Symbol (market,
current, WAP prices, etc.)

The set of field values may be extended
following the Trading system updates. It is
recommended to allow in your code ignoring
unknown values of this field, and linked to such
entry values of other fields, until the new field
meaning can be supported by your application.
Indexes are published in Market statistics (MSR
and MSS) channels for EQ market only. For FX
market there are fixing values in 269=3 (also
MSR\MSS channels).

Preious trading day values are indicated by
additional tag 286

=> 278

MDEntryID

N

String

'I' (Market price 2); on FX market — FX fixing price
as calculated between 11:59 and 12:00 Moscow
time. 'm' (Market price); on FX market — FX fixing
price

'0' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international
FX fixing price

'r' (Official close price);

'v' (Total (for main or additional session) bid
volume);

'w' (Total (for main or additional session) offer
volume);

's' (Dark pool Auction price)

'x' (Dark Pool Auction volume), expressed in
number of securities

'y' (Accrued interest amount per the unit of
security at current date, expressed in rubles)

'u’ (Duration);

'Z' (Trades list).

Unique Market Data Entry identifier. Used, for example,
for

TRADENO.

Notes:

» For trades (269=z) entries, contains a string
with Exchange trade number that is equal to
trade numbers in all trading interfaces contains
a unique string identifier of price level

* For OrderList (OLR, OLS channels), contains a
string identifier of Add Order (279=0) update
for an order, NOT directly tied to the Exchange
Order number in trading interfaces.

» MDEntryID value for new Orders will be
growing for a number up.

=> 55 Symbol Y String Ticker symbol. The MOEX internal instrument identifier,
SecCode.
Note: an instrument with a given SecCode may be
traded in several trading boards (SecBoard). You
should use each Symbol (55)+TradingSessionID (336)
combination as an individual security with its own order
book and list of trades.

=> 83 RptSeq Y int Sequence number of a message within report series.
Incremented by one for each update entry and for
security status updates.

=> 270 MDEntryPx C Price Price of the Market Data Entry.
Conditionally required when MDUpdateAction (279) =
New(0) and MDEntryType (269) not in (‘A", 'B', J).

=> 271 MDEntrySize C Qty Quantity represented by the Market Data Entry.
Conditionally required when MDUpdateAction (279) =
New (0) and MDEntryType (269) in ('0', '1', '2', 'A', 'B',
|Q'I |fll 'g', 'VII 'W')'

Note: For 269="A’,'B’, this field value is expressed in
number of securities. For all other values of tag 269,
this field value is expressed in number of lots.

=> 272 MDEntryDate N UTCDateOnly Date of Market Data Entry.

=> 273 MDEntryTime N UTCTimeOnly Time of Market Data Entry.

=> 336 TradingSessioIlD ' N String Identifier for trading board. Used to represent
SECBOARD.

Note: an instrument with a given SecCode may be
traded in several trading boards (SecBoard). You
should use each Symbol (55)+TradingSessionID (336)
combination as an individual security with its own order
book and list of trades.

=> 625

=> 276

=> 277

=> 286

=> 40

=> 451

=> 236

TradingSessionSu | N String
bID

QuoteCondition N MultipleValueString

TradeCondition N MultipleValueString

OpenCloseSettlFI N MultipleValueString

ag

OrdType N Char
NetChgPrevDay N PriceOffset
Yield N Percentage

'NA — No trading

'O — Opening period

'S - Opening auction period

'C — Closing period

'N — Normal trading period

'L — Closing auction period

'T' — Discrete auction period

'D' — Dark pool auction period

'E' — Trading at the closing auction price period
'A’ - Auction: Order entry phase

‘a’ - Auction: Trade conclusion phase

‘b’ - Auction: Bookbuilding phase, orders are
locked

'p’- Auction: After auction trade phase

'C' (Exchange Best)

'R' (Opening Price) ;

'AJ' (Official Closing Price);
'98' (Minimum value);

'99' (Maximum value).

'4" (Entry from previous business day)

'1' (Market)

Indicates the trading period

For updates and snapshots, Period value indicates a
period for an event reported, not necessarily the
currently running period.

In Trades feeds tag indicates a period when trade was
completed

Space-delimited list of conditions describing a quote.

Space-delimited list of conditions describing a trade.

Flag that identifies a market data entry.

Order type.

Used when MDEntryType (269) ='f', 'g'

Note: Market in Closing Auction orders are activated
and published in Order List feed in Closing Auction
period.

Matching occurs at the end of closing auction.

Out of auction periods, market orders are not published
in the feed because they never stay active.

Net change from previous day closing price vs. last
traded price.

Yield percentage.

=> 64

=> 44
=> 423

=> 5292

=> 5293

=> 5384

=>5154

=> 5459

=> 5510

=> 5558

=> 5559

SettlDate

Price

PriceType

BidMarketSize

AskMarketSize

AccruedInterestA

mt
CXFlag

SettiType

ChgFromWAPrice

BuyBackPx

BuyBackDate

N*

=2

LocalMktDate

Price
int

Int

Int

Amt

Boolean

Char

PriceOffset

Price

LocalMktDate

'1' percentage

'Y' (Yes);
'N' (No).

Specific date of trade settlement (SettlementDate) in
YYYYMMDD format

Notes:

For trades — settlement date of regular trade or
negotiated deal.

For REPO trades — settlement date of first part of
REPO.

REPO rate for REPO trades

Indicates price type (REPO rate in percentage) for REPO
trades.

Total volume of market buy orders calculated for
currently expected auction price, expressed in humber
of securities.Used in closing auctions

Total volume of market sell orders, expressed in
number of securitiesUsed in closing auctions

Amount of accrued interest.

Prevention of uncovered trading for security (269="¢e")

MOEX settlement code for trades (269=z)

Indicates the change from previous day's weighted
average price vs. last traded price.

For REPO deals - REPO value calculated in roubles for
the current date
(used in Trade List (269=z) feed).

For REPO deals - the date of the second part of
REPO (used in Trade List (269=z) feed).
Published as REPO buyback duration
REPOTERM+<Settledate>

=> 5677

=> 5791

=> 5902

=> 6139

=> 6143
=> 7017

=> 9168
=> 9169
=> 9412

=> 9820

=> 10504
=> 1080

=> 10505

=> 10509

=> 10510

Repo2Px

TotalVolume

EffectiveTime

TotalNumOfTrad

es
TradeValue

Volumelndicator

OfferNbOr
BidNbOr
OrigTime

StartTime

OrderSide
RefOrderID

OrderStatus
MinCurrPx

MinCurrPxChgTi
me

Price

Amt

UTSTimestamp
int

Amt
char

int
int
int

UTSTimestamp

char
char

char
Price

UTCTimeOnly

'0' (No orders)

'1' (Less then N* minimum order value)

'2' (Greater then N* minimum order value)
'3' (Order exists)

'0' (Active);

T' (Order activation time hasn't come yet).

Value of the 2nd (buy-back) REPO leg, expressed in
roubles (used in Trade List (269=z) feed).

Used when MDEntryType (269)= 'f, 'g'

Market in auction buy orders have money volume
instead of lot quantity. Other orders use lot quantities.
Order activation time. The order or price level with an
activation time specified is not active until that time.
Total number of trades.

Trade Value.

Volume indicator of Dark Pool auction active orders.
Used when MDEntryType(269)='v' or 'w'".

N (variable)*- the large order volume factor as
determined by the Exchange.
Number of sell orders.

Number of buy orders.

Indicates the microseconds portion of the transaction’s
registration time at the Matching engine. Should be
added to tag’s 273 value to get microsecond precision
timestamp. The field is available in Orders and Trades
channels.

Auction start time. Used for Dark pool and Discrete
auctions

Side of aggressive order in the TLR feed.

In TLR feed: MDentryID of OLR order entry for an
order being hit or taken.

Describes the current state of order. Orders in T status
are not active and not used in matching.

Minimum current price. Used to determine condition
when the short sales should be prohibited.

Time when minimum current price was changed.

