
Moscow Exchange

Market Data Multicast

FIX/FAST Platform

User Guide

Moscow Exchange

Version 4.5

 January 25, 2017

Contents
1. Overview .. 5

1.1. Document History .. 5

1.2. Streaming Data... 8

1.3. Incremental Messaging ... 8

1.4. FIX Format .. 9

1.5. FAST Compression ... 9

1.6. Multicast Delivery ... 9

1.7. Recovery .. 10

2. Getting Started with MOEX Market Data FIX/FAST Multicast Platform .. 11

2.1. Basic Scenario – Connect before the Trade Day Started ... 11

2.2. Connect after the Trade Day Started .. 11

2.3. Incremental Feeds A and B Arbitration .. 12

3. Core Functionality ... 14

3.1. Platform Architecture ... 14

3.2. FAST Implementation .. 17

3.2.1 Introduction ... 17

3.2.2 Stop Bit Encoding ... 18

3.2.3 Implicit Tagging .. 18

3.2.4 Field Encoding Operators .. 19

3.2.5 FAST Template .. 19

3.2.6 Decoding overview ... 21

3.2.7 Sample Template .. 22

3.3. Data Feeds .. 25

3.3.1 Instruments Feed ... 26

3.3.2 Market Statistics, Orders, and Trades Feeds .. 26

3.3.3 Market Recovery Feeds.. 28

3.3.4 Trading Session Status and HeartBeat messages ... 28

3.3.5 TCP Replay... 29

3.4. Recovery .. 30

3.4.1 Market Recovery Overview ... 31

3.4.2 Recovering Data – Process ... 31

3.4.3 TCP Replay... 33

4. FIX Message Specification ... 34

4.1. FIX Component Blocks .. 35

4.1.1 Standard Message Header .. 35

4.1.2 Standard Message Trailer .. 36

4.1.3 Instrument ... 36

4.1.4 Instrument Extension ... 39

4.1.5 Market Segment .. 39

4.2. FIX Session-Level Messages ... 41

4.2.1 Logon (A) ... 41

4.2.2 Logout (5) .. 42

4.2.3 Heartbeat (0) ... 42

4.3. FIX Application-Level Messages ... 43

4.3.1 Security Definition (d) .. 43

4.3.2 Security Status (f) ... 44

4.3.3 Trading Session Status (h) .. 46

4.3.4 Market Data Request (V) ... 47

4.3.5 Market Data - Snapshot/Full Refresh (W) .. 47

4.3.6 Market Data - Incremental Refresh (X) ... 56

1. Overview

This document describes the Moscow Exchange (identified as MOEX below) MOEX Market Data Multicast FIX/FAST Platform. This

platform provides the new highly efficient mechanism for delivering MOEX Market Data to market data consumers. The mechanism

utilizes the FIX protocol for messages structure and syntax, FAST protocol for optimization of data streaming, and UDP protocol for

delivering data to multiple users efficiently.

MOEX Market Data Multicast FIX/FAST Platform includes the following aspects: streaming data, incremental messaging, FIX

format, FAST compression, multicast delivery, and recovery.

1.1. Document History

Issue Date Description

1.0 May 25, 2011 Original version of this document

2.0 December 12, 2012 Clarifications added

3.3 April 08, 2013 Negotiated and REPO deals – specific fields added

Message format changes to separate SECBOARD, Trading Status, and Trading Period
in individual tags.
Additional fields to support REPO with CCP, Closing Auctions, Discrete Auctions, Dark
pool auctions, T+2 trading data
New FAST compression template

Improved readability and fixing document’s errata

3.3.1 May 24, 2013 Fixing document errors and adding clarifications per users’ feedback. Removing
unused fields from document.
Compression template has been corrected.

Document has revision marks ON to highlight changes.

3.3.2 September 04, 2013 Updated specifications for units (lots or securities) that are used in trading volumes

(271)

3.3.3 March 26, 2014 Added field, due to changes in the Listing Rules.

4.0. December 26, 2014 MFIX Market Data Multicast 4.0 code is based on unified with MFIX Transactional
licensed library FIX Antenna C ++ version 2.9.

• Security Status messages are published in a separate ISF channel

and removed from other incremental channels

• FAST template change

• Code change to eliminate temporal crossed book conditions in Order List

channel

• Aggregated Orderbook publishing latency greatly improved and is now equal

to OLR and TLR channels

• Aggregated Orderbook (OBR) channel publishes all price levels

• MDEntryTime (273) and OrigTime (9412) fields are added to the aggregated

Ordebook Channel to indicate the timestamp of last change

• Order List Refresh (OLR) channel contains new DealNumber (9885) field

indicating trade number that caused order change or deletion.

• Market Statistics channel (MSR) contains new entry MDEntryType 269 =’e’,

CXFlag (5154) indication prevention of uncovered trading for security

• Market Data - Snapshot/Full Refresh (W) contains new field RouteFirst (7944)

that marks first FAST message in a set of messages forming snapshot per

security

• TradingSessionID (336) field was moved outside of repeating group in the

Snapshot/Full Refresh (W) message

• New fields were added to the Security Definition (d) message:

o QuoteText (9696) – COMMENTS field of native SECURITIES table

o SettlFixingDate (9119) - the closing date of the shareholders' register

o DividendNetPx (9982) – dividend value expressed in settlement currency

• Added new trading period code for the Opening Auction (625=S and

326=119)

• Multiple editings to improve readability, remove unused fields, add

clarifications

• Added link to a file with technical policies and limitations of TCP replay channel

New value added = ‘3’ (Order exists) for tag 7017 VolumeIndicator

 July 10, 2015 Platform Architecture section is updated with a brief description of the service FAST
UDP multicast marketdata to participants in the stock and currency markets.

4.5 December 19, 2016 MFIX Market Data Multicast version 4.5 is released for public testing. Expected
production launch date is March 13, 2017.

 Aggregated orderbook and aggregated orderbook snapshot (OBR,
OBS) feeds are completely removed. OBR/OBS multicast groups are
reserved for possible future use.
Please use OLR feed to build aggregated data in your application

 FAST templates change
 DealNumber (9885) field is removed from Order List feeds (OLR, OLS)
 RefOrderID (1080) field is added to Trade List feeds (TLR, TLS) to indicate

MDEntryID of OLR order being hit or taken with this trade.
 SendingTime (52) field now contains sending timestamps in

MMDDHHSSmmmmmm format having microsecond precision. Data type is
changed to uInt64 in all messages.

 Document is updated to reflect the above changes
 Additional comments added to the Processing Notes in section 4.3.6
 Network Connectivity Guide section is moved to a separate document

4.5 January 25, 2017 To avoid confusion while adding leading zeroes to SendingTime (52) tag value in

January-September, and to provide uniqueness of values for the nearest 83 years, the

data format in FAST udp multicast 4.5 will be changed to unt64 in a form

yyMMDDHHmmSSuuuuuu with fixed length of 18 digits, where yy – last pair of digits

in the year number (17 for year 2017), MM – month number, DD – day number, HH –

hour number, mm – number of minutes, SS – number of seconds, uuuuuu – fraction

of a second rounded to microseconds. Each part of formatting template has fixed

length. Zeroes are added where necessary.

 New field LastUpdateTime (779) has been added to MSR channel. Field

format is yyMMDDHHmmSSuuuuuu as described above. The meaning of the field is a

timestamp of the last processed transaction in the trading system, for which an

incremental update to MSR channel, relative to the previous updated is published.

While comparing data from MSR, OLR, TLR incremental updates you can now detect,

which update contains most recent data by comparing tag 779 value of MSR channel

to timestamps from tags 273 and 9412 in OLR and TLR channels.

 FAST compression template is changed for MSR/MSS channels

Listed above changes and comments in document are highlighted in blue.

 Corrected description for MDEntryType=f, g

1.2. Streaming Data

Streaming data is the model, which allows one to compose a continuous sequence of information of determinate length into one

message. It is promote to decrease latency and provide very high volume data routing.

1.3. Incremental Messaging

Incremental data model clearly provides less wasteful on resources. Minimum numbers of instructions are needed to update the

book: add, change, delete. An incremental approach sends only necessary data of market events and is intended to significantly reduce

data content.

1.4. FIX Format

MOEX Market Data Multicast FIX/FAST Platform uses FIX message format for messages structure and syntax. Message fields are

delimited using the ASCII 01 <SOH> character. They are composed of a header, a body, and a trailer.

For more information about used messages and tags, see section 4. FIX Message Specification .

1.5. FAST Compression

FAST is a binary compression algorithm used to purpose of the optimization of FIX messages. FAST benefits include reduced
bandwidth and reduced latency. They are achieved at the expense of increased processing time and more complex processing
algorithms. The FAST Protocol uses the following approaches to compact data messages: - implicit tagging;
- field encoding;

- presence map;

- stop bit;

- binary encoding.

These approaches assume that the structures of the transferred messages as well as encoding rules are agreed between the

counter parties. This is usually done via the exchange of machine readable XML-based FAST templates.

For more information about FAST Implementation in MOEX Market Data Multicast, see section 3.2. FAST Implementation.

1.6. Multicast Delivery

Messages are disseminated over the UDP protocol, which allows the Platform to transfer a single packet to multiple destinations

and provides lower than TCP transmission latency.

One FAST encoded FIX message does not occupy more than one UDP packet. This ensures the feed is optimized for bandwidth

efficiency by reducing the impact of multiple network headers and provides support for FAST field encoding to utilize the full suite of

operators including Increment and Copy. These operators will only be used across a set of messages within a single packet.

Currently MOEX Market Data Multicast FIX/FAST Platform does not send more than one FAST encoded FIX message in a UDP

packet, but such possibility can be added in future releases.

To minimize confusion MOEX Market Data Multicast FIX/FAST Platform sends messages from different tables of the Trading

System to different multicast groups.

1.7. Recovery

Rapid recovery is increasingly important as clients must be always in the market. Recovery processes are very useful for recipients

to minimize the probability of a data loss.

MOEX Market Data Multicast FIX/FAST Platform provides data recovery in two ways:

• Market data recovery using market snapshots – suitable for the recovery of a large-scale data loss (i.e. late joiner or major outage);

• TCP Replay of the sent messages – suitable for the recovery of a small-scale data loss (in case when some messages are lost during

the transfer).

2. Getting Started with MOEX Market Data FIX/FAST Multicast Platform

2.1. Basic Scenario – Connect before the Trade Day Started

In general, clients should start listening to MOEX Market Data Multicast FIX/FAST Platform some time before the trading day

starts. This ensures that client will start receiving actual market data without performing any recovery process. The procedure is the

following:

1. Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity

parameters (feeds multicast addresses, ports, etc.).

2. Download the FAST template from ftp. See section 3.2.5 for the description of the FAST template.

3. Start listening Incremental Feed(s) and sequentially apply received data.

2.2. Connect after the Trade Day Started

If client starts listening to MOEX Market Data Multicast FIX/FAST Platform sometime after the trading day started, it should keep

the following procedure:

1. Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity

parameters (feeds multicast addresses, ports, etc.).Download the FAST template from ftp. See section 3.2.5 for the description of

the FAST template.

2. Start listening Instrument Definitions feed to get a list of securities. In addition, IDF feed acts as a snapshot channel for the

Instrument Status channel

3. Start listening required Orders, Statistics, Trades, Instrument Status feeds and queue received data.

4. Start listening corresponding, Orders Recovery, Statistics Recovery, Trades Recovery. For each instrument, receive snapshot where

values of fields 369 and 83 for a given instrument are greater than minimal values of corresponding fields 34 and 83 in the queued

updates for that instrument.

5. Apply all updates where tags 34 and 83 are greater than in snapshot for selected instrument.

6. Continue receiving and normal processing incremental data for selected instrument.

7. Repeat steps 5-6 for all instruments you need. Alternatively, you can start queuing data until you get full snapshot cycle from

message sequence number 1 to next snapshot cycle message with sequence number 1 and apply all updates for all instruments at

once.

8. Stop listening Recovery Feed(s) when all needed instruments are in sync with incremental feed(s).

2.3. Incremental Feeds A and B Arbitration

Data in all UDP Feeds are disseminated in two identical feeds (A and B) on two different multicast IPs. It is strongly recommended

that client receive and process both feeds because of possible UDP packet loss. Processing two identical feeds allows one to statistically

decrease the probability of packet loss.

It is not specified in what particular feed (A or B) the message appears for the first time. To arbitrate these feeds one should use

the message sequence number found in Preamble or in tag 34-MsgSeqNum. Utilization of the Preamble allows one to determine

message sequence number without decoding of FAST message.

Processing messages from feeds A and B should be performed using the following algorithm:

1. Listen feeds A and B

2. Process messages according to their sequence numbers.

3. Ignore a message if one with the same sequence number was already processed before.

4. If the gap in sequence number appears, this indicates packet loss in both feeds (A and B). Client should initiate one of the Recovery

process. But first of all client should wait a reasonable time, perhaps the lost packet will come a bit later due to packet reordering.

UDP protocol can’t guarantee the delivery of packets in a sequence.

Example:

Feed A

Feed B

34-MsgSeqNum =

59

34-MsgSeqNum = 59

34-MsgSeqNum =

60

34-MsgSeqNum = 60

34-MsgSeqNum =

62

34-MsgSeqNum = 61

34-MsgSeqNum = 34-MsgSeqNum = 62

63

34-MsgSeqNum =

65

34-MsgSeqNum = 65

Messages received from Feed A and Feed B.

1. Receive message # 59 from Feed A, process it.

2. Receive message #59 from Feed B, discard it, because this message was processed before from Feed A.

3. Receive message # 60 from Feed A, process it.

4. Receive message #60 from Feed B, discard it, because this message was processed before from Feed A.

5. Receive message #62 from Feed A, discard it and wait for message #61.

6. Receive message # 61 from Feed B, process it.

7. Receive message # 62 from Feed B, process it.

8. Receive message #62 from Feed A, discard it, because this message was processed before from Feed B.

9. Receive message # 63 from Feed A, process it.

10. Receive message #65 from Feed A, discard it and wait for message #64.

11. Receive message #65 from Feed B, discard it and wait for message #64.

12. Begin recovery process, because gap is detected. Message #64 missed.

3. Core Functionality

3.1. Platform Architecture

UDP channels used to transfer market data from MOEX. UDP channels are also used for recovery process, TCP connection is used

to replay sets of lost messages, already published in the one of UDP Channels.

Following feeds are used in the system:

1. Basic:

1.1. Market Data Incremental Refresh feeds.

1.2. Instrument Definition feeds.

2. Recovery:

2.1. Market Recovery feeds.

2.2. TCP Replay sessions.

MOEX Market Data Multicast broadcast feeds:

• Basic Feeds:

o Market Statistics Feeds (MSR)

 Statistics Feed A

 Statistics Feed B

o Active Orders List Feeds (OLR)

 Orders Feed A

 Orders Feed B

o Trades List Feeds (TLR)

 Trades Feed A

 Trades Feed B

o Instrument Status Feeds (ISF):

 Status Feed A;

 Status Feed B;

• Recovery Feeds:

o Market Statistics Recovery Snapshots Feeds (MSS)

 Statistics Recovery Feed A

 Statistics Recovery Feed B

o Active Orders List Recovery Snapshots Feeds (OLS)

 Orders Recovery Feed A

 Orders Recovery Feed B

o Trades List Recovery Snapshot Feeds (TLS)

 Trades Recovery Feed A

 Trades Recovery Feed B

• Instruments Definitions Feeds (IDF), also used as recovery feed for ISF feed:

o Instruments Definitions Feed

A

o Instruments Definitions Feed

B

Besides publishing market data in UDP channels, MOEX Market Data Multicast FIX/FAST Platform can accept TCP requests from

clients. The replay of data from the following feeds can be requested over TCP connection:

o Statistics Feed (MSR)

o Orders Feed (OLR)

o Trades Feed (TLR)

o Instrument Status Feed (ISF)

There are some restrictions for market data transfer over TCP connection. Effective numeric values can be found in the

TCP_Replay_Limits.pdf file located at ftp://ftp.moex.com/pub/FAST/ASTS/config/ folder.

Moscow Exchange runs two instances of FAST UDP multicast market data feed. This allows switching to the available feed in case

of issues with one of the instances. Both instances are statistically identical in publishing latency.

 FAST templates, server-side software, data contents, and MDEntryID fields identical for both services.

 FAST message sequence numbers for ASTS_FAST and ASTS_FAST2 services do NOT match.

3.2. FAST Implementation

This part contains the description of the implementation FIX Adapted for STreaming (FAST) protocol.

3.2.1 Introduction

The FIX Adapted for STreaming (FAST) Protocol has been developed as part of the FIX Market Data Optimization Working Group.

FAST is designed to optimize electronic exchange of financial data, particularly for high volume, low latency data dissemination.

FAST is a data compression algorithm that significantly reduces bandwidth requirements and latency between sender and receiver.

FAST works especially well at improving performance during periods of peak message rates. FAST extends the base FIX specification and

assumes the use of FIX message formats and data structures. FAST is a standalone specification that uses templates to encode an

instance of an application type, or part thereof, as a stream of bytes, and to inform the receiver which operations to use in decoding.

MOEX Market Data Multicast Platform distributes FIX messages which are encoded in FAST. The Preamble is found before the

FAST encoded message, and contains the sequence number (Fig 1).

ftp://ftp.moex.com/pub/FAST/ASTS/config/
ftp://ftp.moex.com/pub/FAST/ASTS/config/

Figure 1

3.2.2 Stop Bit Encoding

 An important property of the FAST transfer encoding is the use of stop bit encoded entities. In FAST, a stop bit is used instead of

FIX’s traditional <SOH> separator byte. Thus 7 bits of each byte are used to transmit data and the eighth bit is used to indicate the end

of a field.

3.2.3 Implicit Tagging

 In traditional FIX messages each field takes the form “Tag=Value<SOH>” where the tag is a number representing which field is

being transmitted and the value is the actual data content. The ASCII <SOH> character is used as a byte delimiter to terminate the field.

For example: 35=x|268=3 (message header)

279=0|269=2|270=9462.50|271=5|48=800123|22=8 (trade)

279=0|269=0|270=9462.00|271=175|1023=1|48=800123|22=8|346=15 (new bid 1)

279=0|269=0|270=9461.50|271=133|1023=2|48=800123|22=8|346=12 (new bid 2)

FAST eliminates redundancy with a template that describes the message structure. This technique is known as implicit tagging as

the FIX tags become implicit in the data. A FAST template replaces the tag=value syntax with “implicit tagging” as follows:

• tag numbers are not present in the message but specified in the template

• fields in a message occur in the same sequence as tags in the template

• the template specifies an ordered set of fields with operators.

3.2.4 Field Encoding Operators

FAST functions as a state machine and must know which field values to keep in memory. FAST compares the current value of a

field to the prior value of that field and determines if the new value should be constant, default, copy, delta (integer or string),

increment, or tail.

Some operators rely on a previous value. A dictionary is a cache in which previous values are maintained. All dictionary entries are

reset to the initial values specified after each UDP packet. Currently, MOEX sends one message per UDP packet. In this realization delta

is not needed.

A field within a FAST template will generally have one of the Field Operators: Constant, Default, Copy, Delta, Increment.

A field within a FAST template will have one of the following Data Types: String, Signed Integer, Unsigned Integer, byte Vector,

and Decimal.

3.2.5 FAST Template

 A FAST template corresponds to a FIX message type and uniquely identifies an ordered collection of fields. The template also

includes syntax indicating the type of field and transfer decoding to apply. A template is communicated between MOEX and client

systems in XML syntax using the FAST v1.1 Template Definition Schema maintained by FIX. The XML format is human- and machine-

readable and can be used for authoring and storing FAST templates. Session Control Protocol (SCP) will not be used.

A template consists of Field Instructions that define the fields contained in the message. Field Instructions specify the field name,

tag number, data type, field operator, and presence attribute that indicate if a field is optional or mandatory.

A sample market data template is shown below (Fig. 2). The syntax is standard XML and can be parsed using a variety of open

source tools. Valid template syntax is determined by the FAST Template Schema which is available in the FAST v1.1 specification.

Figure 2

3.2.6 Decoding overview

The FAST template contains the instructions to decode and reconstruct compressed message data into the FIX format and also

supports repeating groups (sequences) that allow a single message to convey multiple instructions (i.e. book update, trade, high/low,

etc.). Decoding process include following steps:

Figure 3

• Transport.

Client System receives encoded FAST message.

• Transfer decoding.

Transfer decoding is the initial step that converts data from the FAST 7-bit binary format. It

includes:

 Identify template;

 Extract binary encoded bits;

 Map bits to fields per template.

• Field decoding.

Field decoding is the second part of the decompression process that reconstructs data values according to template-

specified operations. Field decoding operations are assigned per field within the template; decoding reinstates data as indicated by

the template.

• Build FIX message.

It includes:

 Decoding begins with the identification of the Pmap bit for each field.

 The encoded FAST 7-bit binary values are obtained.

 Then the encoded FAST 7-bit binary values are de-serialized based on the data type specified in the template.

 The decoder maintains the state of prior values for each field throughout decoding and applies them for fields having

operators of Delta, Copy, or Increment.

 Obtain fully decoded values.

• Process FIX message.

3.2.7 Sample Template
Table 1

LLi
ne #

Template Syntax Use and Description

1 <template name="X" id="6"
xmlns="http://www.fixprotocol.org/ns/fast/td/1.1">

Provides the template name and template identifier.

2 <string name="MessageType" id="35">
 <constant value="X" />
</string>

Field instruction for MessageType defined as a string with identifier = 35
corresponding to the FIX tag number. MessageType has a constant field

operator with a value of X which indicates the FIX message type—in this case

Market Data Incremental Refresh.

3 <string name="ApplVerID" id="1128"><copy/></string> Field instruction for ApplVerID defined as a string with an identifier = 1128

corresponding to the FIX tag number. ApplVerID has a copy field operator.
4 <string name="SenderCompID" id="49"><copy/></string> Field instruction for SenderCompID defined as a string with identifier = 49

corresponding to the FIX tag number. SenderCompID has a copy field

operator.
5 <uInt32 name="MsgSeqNum" id="34"><increment/></uInt32> Field instruction for MsgSeqNum defined as an unsigned integer with identifier

= 34 corresponding to the FIX tag number. MsgSeqNum has an increment

field operator.
6 <uInt64 name="SendingTime" id="52"><copy/></uInt64> Field instruction for SendingTime defined as an unsigned integer and with

identifier = 52 corresponding to the FIX tag number. SendingTime has a copy

field operator.
7 <byteVector name="MessageEncoding"

id="347"presence="optional"><default/></byteVector>
Field instruction for MessageEncoding defined as a byte vector and with

identifier = 347 corresponding to the FIX tag number. MessageEncoding has a

default field operator.
8 <sequence name="GroupMDEntries">

<length name="NoMDEntries" id="268"/>
Sequence instruction demarks the beginning of the MDEntries repeating group.

The sequence includes a length field called ‘NoMDEntries’ that specifies the

number of repeating groups present in the message.
9 <uInt32 name="MDUpdateAction" id="279"

presence="optional"><copy/></uInt32>
Field instruction for MDUpdateAction defined as an unsigned integer and

identifier = 279 corresponding to the FIX tag number. MDUpdateAction has a

copy field operator.
10 <string name="MDEntryType" id="269"

presence="optional"><copy/></string>
Field instruction for MDEntryType which is defined as a string and has an

identifier = 269 which corresponds to the FIX tag number. MDEntryType has a

copy field operator.
11 <byteVector name="MDEntryID" id="278"

presence="optional"><copy/></byteVector>
Field instruction for MDEntryID which is defined as a byte vector and has an

identifier = 278 which corresponds to the FIX tag number. MDEntryID has a

copy field operator.
12 <byteVector name="Symbol" id="55"

presence="optional"><copy/></byteVector>
Field instruction for Symbol which is defined as a byte vector and has an

identifier = 55 which corresponds to the FIX tag number. Symbol has a copy

field operator.
13 <int32 name="RptSeq" id="83"

presence="optional"><copy/></int32>
Field instruction for RptSeq defined as a signed integer with identifier = 83

corresponding to the FIX tag number. RptSeq has a copy field operator.
14 <decimal name="MDEntryPx" id="270"

presence="optional"><copy/></decimal>
Field instruction for MDEntryPx defined as a decimal with identifier = 270

corresponding to the FIX tag number. MDEntryPx has a copy field operator.
15 <decimal name="MDEntrySize" id="271"

presence="optional"><copy/></decimal>
Field instruction for MDEntrySize defined as a decimal with identifier = 271

corresponding to the FIX tag number. MDEntrySize has a copy field operator.

16 <uInt32 name="MDEntryDate" id="272"

presence="optional"><copy/></uInt32>
Field instruction for MDEntryDate defined as an unsigned integer and identifier

= 272 corresponding to the FIX tag number. MDEntryDate has a copy field

operator.
17 <uInt32 name="MDEntryTime" id="273"

presence="optional"><copy/></uInt32>
Field instruction for MDEntryTime defined as an unsigned integer and identifier

= 273 corresponding to the FIX tag number. MDEntryTime has a copy field

operator.
18 <byteVector name="TradingSessionID"

id="336"presence="optional"><copy/></byteVector>
Field instruction for TradingSessionID which is defined as a byte vector and

has an identifier = 336 which corresponds to the FIX tag number.

TradingSessionID has a copy field operator.
19 <byteVector name="QuoteCondition" id="276"

presence="optional"><copy/></byteVector>
Field instruction for QuoteCondition which is defined as a byte vector and has

an identifier = 276 which corresponds to the FIX tag number. QuoteCondition

has a copy field operator.
20 <byteVector name="TradeCondition" id="277"

presence="optional"><copy/></byteVector>
Field instruction for TradeCondition which is defined as a byte vector and has

an identifier = 277 which corresponds to the FIX tag number. TradeCondition

has a copy field operator.
21 <byteVector name="OpenCloseSettlFlag"

id="286"presence="optional"><copy/></byteVector>
Field instruction for OpenCloseSettlFlag which is defined as a byte vector and

has an identifier = 286 which corresponds to the FIX tag number.

OpenCloseSettlFlag has a copy field operator.
22 decimal name="NetChgPrevDay" id="451"

presence="optional"><copy/></decimal>
Field instruction for NetChgPrevDay defined as a decimal with identifier = 451

corresponding to the FIX tag number. NetChgPrevDay has a copy field

operator.
23 <decimal name="AccruedInterestAmt"

id="5384"presence="optional"><copy/></decimal>
Field instruction for AccruedInterestAmt defined as a decimal with identifier =

5384 corresponding to the FIX custom tag number. AccruedInterestAmt has a

copy field operator.
24 <decimal name="ChgFromWAPrice" id="5510"

presence="optional"><copy/></decimal>
Field instruction for ChgFromWAPrice defined as a decimal with identifier =

5510 corresponding to the FIX custom tag number. ChgFromWAPrice has a

copy field operator.

25 <int32 name="TotalNumOfTrades" id="6139"

presence="optional"><copy/></int32>
Field instruction for TotalNumOfTrades defined as a signed integer with

identifier = 6139 corresponding to the FIX custom tag number.

TotalNumOfTrades has a copy field operator.
26 <decimal name="TradeValue" id="6143"

presence="optional"><copy/></decimal>
Field instruction for TradeValue defined as a decimal with identifier = 6143

corresponding to the FIX custom tag number. TradeValue has a copy field

operator.

27 <decimal name="Yield" id="236"

presence="optional"><copy/></decimal>
Field instruction for Yield defined as a decimal with identifier = 236

corresponding to the FIX tag number. Yield has a copy field operator.
28 <int32 name="OfferNbOr" id="9168"

presence="optional"><copy/></int32>
Field instruction for OfferNbOr defined as a signed integer with identifier =

9168 corresponding to the FIX custom tag number. OfferNbOr has a copy field

operator.
29 <int32 name="BidNbOr" id="9169"

presence="optional"><copy/></int32>
Field instruction for BidNbOr defined as a signed integer with identifier = 9169

corresponding to the FIX custom tag number. BidNbOr has a copy field

operator.
30 <string name="OrderSide" id="10504"

presence="optional"><copy/></string>
Field instruction for OrderSide defined as a string with an identifier = 10504.

OrderSide has a copy field operator.
31 <string name="OrderStatus" id="10505"

presence="optional"><copy/></string>
Field instruction for OrderStatus defined as a string with an identifier = 10505.

OrderStatus has a copy field operator.
32 <decimal name="MinCurrPx" id="10509"

presence="optional"><copy/></decimal>
Field instruction for MinCurrPx defined as a decimal with identifier = 10509.

MinCurrPx has a copy field operator.
33 <uInt32 name="MinCurrPxChgTime"

id="10510"presence="optional"><copy/></uInt32>
Field instruction for MinCurrPxChgTime defined as an unsigned integer and

identifier = 10510. MinCurrPxChgTime has a copy field operator.

3.3. Data Feeds

The use of incremental FIX market data messaging in combination with FAST compression produces highly optimized feeds which
are distributed in UDP channels. Each Feed is transferred over separate multicast-address. Feeds have the following structure:

o Statistics Feeds

 Statistics Feed A

 Statistics Feed B

o Orders Feeds

 Orders Feed A

 Orders Feed B

o Trades Feeds

 Trades Feed A

 Trades Feed B

o Instrument Status Feeds

 Instrument Status Feed A

 Instrument Status Feed B

o Instruments Feeds

 Instruments Definitions Feed

A

 Instruments Definitions Feed

B

In Feeds A and B the equal market data information is sent. It provides low probability of packets loss, and reduce the need in

recovery processes.

3.3.1 Instruments Feed

Instruments Definitions Feed A/B provides the security main parameters in a Security Definition (d) message and changes to the

definition and/or identity of the security. In this feeds FIX messages encoded to FAST are sent repeatedly with fixed time interval. One

FIX message contains information about one security.

Message example:

8=FIXT.1.1|9=400|35=d|1128=9|34=1551|460=5|423=2|911=1572|49=MOEX|55=VRSBP|48=RU000A0DPG75|22=4|461=EPXX

XX|167=PS|

107=Voronezh EnergoSbyt.Comp(pref)|15=RUB|120=RUB|5217=2-01-55029-

Е|5385=FOND|969=0.001|5508=0.4|7595=18716678|350=54|351="Воронеж.энергосб.комп"ОАО

ап|5382=20|5383=ВоронЭнСбп|52=2011050308:29:32.968|870=2|871=27|872=3|871=8|872=0|1310=1|561=1|1309=1|336=SMAL|

10=000|

Note: each security symbol (55) may be traded in several trading boards that differ by rules. Tag 336 indicates <Board>. There

may be multiple different Board values for each security symbol. Please treat each combination of tags 55 and 336 in Security definition

as a separate entity with separate stream of market data updates.

3.3.2 Market Statistics, Orders, and Trades Feeds

The following market data is also distributed in separate feeds:

 Statistics Feed A/B – market statistics, changes in SECURITIES table.

Statistics Feeds also include Add, Change, and Delete blocks. Entry types

are:

'0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance)

'B' (Trade Volume, expressed in number of securities);

'J' (Empty book);

'N' (Session high bid);

'O' (Session low offer);

'Q' (Auction Clearing Price);

‘W’(Closing auction price);

‘c’(Closing auction volume);

‘e’(Prevention of uncovered trading for security)

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

'l' (Market price 2); on FX market – FX fixing price as calculated between 11:59 and 12:00 Moscow time.

'm' (Market price); on FX market – FX fixing price

'o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international FX fixing price

'r' (Official close price);

'v' (Total bid volume);

'w' (Total offer volume);

's' (Dark pool Auction price)

 'x' (Dark Pool Auction
volume)

y’(Accrued interest amount per the unit of security at current date, expressed in rubles)

'u' (Duration);.

• Orders Feed A/B – changes in ORDERS table.

Orders Feeds also include Add, Change, and Delete blocks. Entry types are: '0' (Bid), '1' (Offer), ‘f’

(buy market order in closing auction), ‘g’(sell market order in closing auction), ‘J’ (Empty book)

 Trades Feed A/B – changes in TRADES table.

Trades Feeds include only Add block (MDUpdateAction(279) =0) and custom entry type MDEntryType (269) = 'z' (Trade

List). ‘J’ – no trades per instrument.

The data is transmitted in a form of FIX-messages Market Data – Incremental Refresh (X) encoded into FAST format. Each

message can include the updates of several financial instruments.

• Instrument Status feeds A/B – changes in security trading status which are published as Security Status (35=f) messages.

3.3.3 Market Recovery Feeds

Each Market Recovery feed (Statistics, Orders, Trades, Instrument Status) sends the Market Data Snapshot / Full Refresh

(MsgType (35) = W) messages encoded to FAST. Each message contains the information about one security. Information in Market Data

Snapshot / Full Refresh message includes status of the connection with the market (TradSesStatus (340) tag) and changes in status of a

security (MDSecurityTradingStatus (1682) tag).

Market Recovery feeds should be used for recovery purposes only. Once the client system has retrieved recovery data, it

recommended stopping listening to the Market Recovery feeds.

3.3.4 Trading Session Status and HeartBeat messages

Trading Session Status (h) message is used to represent connection status with appropriate MOEX market. When status of

connection changed this message is sent into UDP channel.

If no updates are produced or in pauses between that snapshot cycles UDP multicast feeds periodically publish HeartBeat

messages.

Trading Session Status and HeartBeat messages increment the feed message sequence number counter (34).

3.3.5 TCP Replay

The TCP replay component allows requesting a replay of a set of messages already published in one of UDP Channels.

The request is submitted by FIX Market Data Request message (35=V) with a range of sequence numbers and UDP Channel

identifier.

After establishing TCP-session, client should send the FIX Logon message, always with sequence number 1. It is strongly

recommended to use SenderCompID strings that allow client identification at firm level. When requesting the lost data client should

specify the channel ID. Channel IDs can be found in MOEX Market Data Multicast FIX/FAST Platform configuration file available on ftp.

They are OLR (for Order List feed), TLR (for Trade List feed), MSR (for Market Statistics feed), ISF (Instrument Status feed).

Only single data request is allowed per TCP/FIX session. After processing the request, the server sends requested FAST messages

as tcp data stream. The length of the message in TCP stream can be found in 4-bytes number before each message being transmitted:

After sending all data the server initiates termination of session by sending FAST encoded Logout message and then waits for FIX

Logout

reply. After receiving reply the TCP connection is closed. It is an abnormal condition is client does not send confirming Logout within

timeout period.

TCP Replay should be used in case of dropping small numbers of messages in both feed copies.

To limit the server load and network utilization by tcp replay traffic, the following technical limitations and policies are applied:

• Number or requested messages is limited. An attempt to request more messages will be rejected and followed by immediate

logout message

• Number of simultaneous TCP sessions per source IP address is limited. An attempt to establish more TCP sessions is rejected
 Number of TCP connections per day per source IP address is limited. Connection attempts after exceeding the limit are

rejected Total number of simultaneous TCP sessions is limited. Extra sessions are rejected.
• Limited waiting time for request and logout is applied. The session is terminated if waiting timeout is exceeded.

Effective numeric values can be found in the TCP_Replay_Limits.pdf file located at ftp://ftp.moex.com/pub/FAST/ASTS/config/ folder.

3.4. Recovery

MOEX Market Data Multicast FIX/FAST Platform disseminates Market Data in all feeds over two UDP subfeeds: Feed A and Feed B.

In Feeds A and B the identical messages are sent. It lowers the probability of packets loss and provides the first level of protection

against missed messages.

Sometimes, messages may be missed on both feeds, requiring a recovery process to take place. Message loss can be detected

using the FIX message sequence numbers (tag MsgSeqNum (34)), which are also found in the Preamble. The message sequence

number is an incrementing number; therefore, if a gap is detected between messages in the tag MsgSeqNum (34) value, or the

Preamble sequence number, this indicates a message has been missed. In addition, tag RptSeq (83) can be used to detect a gap

between the messages at the instrument level. In this case client system should assume that market data maintained in it is no longer

correct and should be synchronized to the latest state using one of the recovery mechanisms.

MOEX Market Data Multicast FIX/FAST Platform offers several options for recovering missed messages and synchronizing client

system to the latest state. Market Recovery process together with Instruments Replay Feed is the recommended mechanism for

recovery. TCP Replay provides less performance mechanism which is recommended only for emergency recovering of a small amount of

lost messages when other mechanisms cannot be used for some reason. Instrument level sequencing and natural refresh can be utilized

to supplement the recovery process. Notes:

• We strongly recommend that client systems process both the A and B Incremental UDP feeds. UDP Feed A and UDP Feed B

provide the first level of protection against missed messages.

• We recommend Market Recovery as a primary recovery option.

ftp://ftp.moex.com/pub/FAST/ASTS/config/
ftp://ftp.moex.com/pub/FAST/ASTS/config/

3.4.1 Market Recovery Overview

This recovery method is preferable to use for a large-scale data recovery and for late joiners. Recovery feeds contains Market

Data - Snapshot/Full Refresh (W) messages.

The sequence number (LastMsgSeqNumProcessed(369)) in the Market Data - Snapshot/Full Refresh (W) message corresponds to

the sequence number (MsgSeqNum(34)) of the last Market Data - Incremental Refresh (X) message of a given instrument in the

corresponding feed. Note that these values are different for different instruments.

Instrument level sequence number (RptSeq(83)) in Market Data - Snapshot/Full Refresh (W) message correspond to the sequence

number (RptSeq(83)) in the MDEntry from the last Market Data - Incremental Refresh (X) message. Thus tag MsgSeqNum(34) shows the

gap at the messages level, tag RptSeq(83) shows the gap at the instrument level.

After value of RptSeq(83) tag from Market Data - Incremental Refresh (X) becomes more than value of RptSeq(83) tag from

Market Data - Incremental Refresh (X), market data becomes in sync with market.

After value of MsgSeqNum(34) from Market Data - Incremental Refresh (X) message becomes more than value of tag
LastMsgSeqNumProcessed(369) from Market Data - Snapshot/Full Refresh (W) message for a given instrument, market data becomes for
this instrument becomes in sync with market.

Message sequence numbers start from #1 in Market Data - Snapshot/Full Refresh (W) messages in each cycle.

First Market Data - Snapshot/Full Refresh (W) message in a set of messages for an instrument in Recovery Feeds is marked by tag

RouteFirst (7944)=Y.

 Last Market Data - Snapshot/Full Refresh (W) message in a set of messages for an instrument in Recovery Feeds is marked by

tag LastFragment (893) =’Y’. So the snapshot is considered as obtained as soon as the message with tag LastFragment (893) =’Y’ is

received and all snapshot messages with lower sequence numbers are received.

Clients should keep queuing a real-time data until all missed data is recovered. The recovered data should be applied prior to the

queued data.

The steps during Recovery process corresponds to the steps 4 – 7 from point 2.2.

Since clients have retrieved recovery data, it is recommended to stop listening Market Recovery feeds.

3.4.2 Recovering Data – Process

The recovering data process should be applied to affected feeds only. Unaffected feeds can be processed as usual. The process

can follow two paths: queuing current data while recovering or processing current data while recovering.

 3.4.2.1.1 Queuing

This process implies the queuing the Incremental Market Data from Incremental Feeds while receiving Market Data Snapshots

from Recovery Feeds. In order to avoid an excessive number of queued messages, it is recommended to process snapshots and apply

the applicable incremental feed as the snapshots arrive.

1. Identify Feed(s) in which the client system is out of sync.

2. Listen to and queue the Incremental Market Data from the affected Feed(s).

3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s), receive and apply snapshots.

4. Verify that all snapshots have been received for a given Market Recovery feed, using one of the following approaches:

a. Message sequence numbers in each loop of snapshots start from 1. So to determine the end of the loop one can wait

until the next message with 34-MsgSeqNum = 1 arrives.

b. Snapshots in the Recovery Feeds are sent in the same order as Security Definitions in Instruments Feed. Tag 7944

RouteFirst marks the first message in a set of messages forming snapshot per instrument. Tag 893-LastFragment in the

W-message indicates whether it is the last fragment in a set of messages forming snapshot per instrument. Receiving

all messages per instrument from tag 7944=Y to 893=Y ensures getting full snapshot for the instrument.

5. Apply all queued incremental data in the sequence, where

a. tag 34-MsgSeqNum (or the Preamble sequence number) is greater than the lowest value for tag 369-

LastMsgSeqNumProcessed for a given instrument;

OR

b. tag 83-RptSeq from the Market Data Incremental – Refresh (X) message is greater than the lowest value for tag 83-

RptSeq from the Market Recovery feed for a given instrument.

6. Continue normal processing

 3.4.2.1.2. Concurrent Processing

This process implies the possibility to resume normal processing of an instrument while other affected instruments are still being

recovered.

1. Identify Feed(s) in which the client system is out of sync.

2. Listen to the Incremental Market Data from the affected Feed(s) and optionally attempt a natural refresh.

3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s)

4. 4. For each instrument:

a. compare tag 369-LastMsgSeqNumProcessed on the Market Recovery feed to tag 34-MsgSeqNum (or the Preamble

sequence number) on the Incremental Market Data feed and verify that the value for tag 34-MsgSeqNum is not lower;

OR

b. compare tag 83-RptSeq on the Market Recovery feed to tag 83-RptSeq on the Incremental Market Data feed and verify

that the value for tag 83-RptSeq on the Incremental Market Data feed is not lower.

5. Continue normal processing

 3.4.2.1.3. Instrument Level Sequencing

Market Data Incremental Refresh messages contain instrument sequence numbers (tag 83-RptSeq), in addition to message

sequence numbers (tag 34-MsgSeqNum). Every repeating group instance of a market data entry contains an incremental sequence

number (tag 83-RptSeq) that is associated with the instrument for which the data is present in the block.

Client systems can keep track of the instrument sequence number (tag 83-RptSeq) for every instrument by inspecting incoming

data and determin whether there is a gap in the instrument sequence number.

• If there is a gap in the instrument sequence number, it indicates that data was missed for the instrument when message

loss occurred.

• If there is no gap, the data can be used immediately, and it also indicates that the book for this instrument still has a

correct, current state.

 3.4.2.1.4. Natural Refresh

The client system must track the state of the book at all times with the FIX Market Data Incremental Refresh messages. It is

possible, though not guaranteed, that a set of these book update messages can be used to construct the current, correct state of a book

without prior book state knowledge. This process is called Natural Refresh. Prior to the beginning of a natural refresh, the entire book

should be emptied. Natural refresh assumes no prior knowledge of a book state.

3.4.3 TCP Replay

If market data from Statistics, Orders, and Trades Feeds was missed, it can be recovered over the TCP historical replay

component using the sequence number range. TCP Replay is a low performance recovery option and should be only used if other

options are unavailable or for a small-scale data recovery. A number of messages which can be requested by client during TCP

connection are limited.

TCP replay include the following:

1. Establish TCP connection with MOEX Market Data Multicast.

2. Send FIX Logon(A) message with sequence number 1 to the server. After successful authorization the server sends the FAST-

encoded Logon(A) message. 553 (username) and 554 (password) here is one of the pairs user0\pass0, user1\pass1, user2\pass2

Example: 8=FIXT.1.1|9=94|35=A|49=SimpleClient|56=MOEX|34=1|52=20150530-

11:01:44|98=0|108=10|553=user0|554=pass0|1137=9|10=078|

3. Send Market Data Request (V) message with:

a. Tag ApplID (1180) - the channel ID (as specified in a server configuration file available on ftp: OLR, TLR, or MSR).

b. Range of sequence numbers - ApplBegSeqNum(1182) and ApplEndSeqNum (1183) tags.
Example: 8=FIXT.1.1 | 9=91 | 35=V | 1128=9 | 49=SimpleClient | 56=MOEX | 34=2 | 52=20150530-11:01:44 | 1180=OLR | 1182=1000 |

1183=1400 | 10=077|

The server processes only a single valid Market Data Request (V). If the request is correct, the server sends FAST

messages according to requested sequence numbers.

After server responses, the server sends FAST Logout (5) message.

If the request is incorrect, the server sends FAST Logout (5) message with reject reason.

If no request is received within maximum waiting interval, then the server sends FAST Logout (5) message with logout reason

After sending Logout message the server waits for confirming logout.

TCP connection is closed after receiving confirming logout or after maximum waiting time is reached.

Note: closing connection without sending confirming logout is considered as abnormal situation.

4. FIX Message Specification

This part contains the description of FIX 5.0 SP2 protocol messages, component blocks and fields which are supported by MOEX

Market Data Multicast.

This specification is based on FIX 5.0 SP2 standard for application-level messages, FIXT 1.1 for session-level messages

(http://fixprotocol.org/) and adapted to MOEX’s purposes. It’s assumed that users have basic knowledge about FIX standard.

Only messages, component blocks and fields which are described in this document are supported by MOEX Market Data Multicast.

Note that all fields which are required or conditionally required by FIX 5.0 SP2 standard but absent in MOEX Interface specification are

optional and will be ignored by MOEX. All field values which are valid according to FIX 5.0 SP2 standard but aren’t described in this

document will be considered as invalid and incoming messages with such values will be rejected.

4.1. FIX Component Blocks

4.1.1 Standard Message Header
Table 2

Field name Type Valid values Comments

8 BeginString

Y String (8)

'FIXT.1.1' Identifies beginning of new message and protocol version. Always
unencrypted, must be first field in message.

9 BodyLength

C Length Message length, in bytes, forward to the CheckSum field. Always

unencrypted, must be second field in message. Should be present if
message sends in TCP Recovery service.

35 MsgType Y String (10) Defines message type. Always unencrypted,should be the third tag in the

message.
1128 AppVerID Y String (1) ‘9’ (FIX50SP2) Specifies the service pack release being applied for application-level

messages. Always unencrypted. Should be placed next to 35 tag.
49 SenderCompID Y String (12) Assigned value used to identify the firm sending a message.

Always unencrypted.
If this message is sent to MOEX TCP replay server, SenderCompID may

contain an arbitrary string.
56 TargetCompID Y String Assigned value used to identify a receiving firm.

Always unencrypted.

If this message sent from MOEX, then it will contain USERID assigned to

a trader by MOEX.

Tag

Req'd

http://fixprotocol.org/
http://fixprotocol.org/
http://fixprotocol.org/

If this message sent to MOEX, then it should contain the MOEX server

identifier. This parameter is given by MOEX

34 MsgSeqNum Y SeqNum Integer message sequence number.

52 SendingTime Y uInt64 Time of message transmission (in UTC time zone) in the following format:

yyMMDDHHmmSSuuuuuu with fixed length of 18 digits, where yy – last

pair of digits in the year number (17 for year 2017), MM – month number,

DD – day number, HH – hour number, mm – number of minutes, SS –

number of seconds, uuuuuu – fraction of a second rounded to

microseconds. Each part of formatting template has fixed length. Zeroes

are added where necessary.

Example: 52=170125080709000030 is for a timestamp of

2017-01-25 08:07:09.000030 in human-readable format.

Please note that this format is also used in FIX messages of TCP replay

channel.

347 MessageEncoding N String(11) 'UTF-8' (Unicode) Type of message encoding (non-ASCII characters). Required if any

"Encoding" fields are used except ASCII

4.1.2 Standard Message Trailer

Table 3

T
a

g
 Field name

R
e

q
'd

 Type Valid values Comments

10 CheckSum Y String(3) Three byte, simple checksum.
Always unencrypted, always last field in message.

4.1.3 Instrument
Table 4

Field name Type Valid values Comments

55 Symbol Y String(12) Ticker symbol. The MOEX internal instrument

identifier, SecCode.
Note: an instrument with a given SecCode may be

traded in several trading boards (SecBoard). You

should use each Symbol (55)+TradingSessionID

(336) combination as an individual security with its

own order book and list of trades.
48 SecurityID N String Security identifier value of SecurityIDSource (22)

type. (for example CUSIP, SEDOL, ISIN etc).
22 SecurityIDSource N String '4' (ISIN) Identifies class or source of the SecurityID (48)

value. Field is obligatory if Security ID (48) is

specified.
460 Product N int '3' (CORPORATE);

'4' (CURRENCY);
'5' (EQUITY);
'6' (GOVERNMENT);
'7' (INDEX);

'9' (General collateral certificate)
'10' (MORTGAGE)
'11' (MUNICIPAL);
'12' (OTHER);
'13' (FINANCING).

Indicates the type of product the security is

associated with.

461 CFICode N String Indicates the type of security using ISO 10962

standard, Classification of Financial Instruments (CFI

code) values.

Tag

Req'd

167 SecurityType N String 'CORP' (Corporate Bond);

'FOR' (Foreign Exchange Contract);

'CS' (Common Stock);

'PS' (Preferred Stock);

'EUSOV' (Euro Sovereigns);'

'BN' Bank Notes;

'MF' Mutual Fund

'MUNI' (Municipal bonds);

'RDR' – (Russian depositary receipt)

'ETF' – (Exchange traded fund);

'COFP' (Certificate Of Participation):

'XCN' (Extended Comm Note);

'STRUCT' (Structured Notes);

'WAR' (Warrant)

'GCD' (General collateral certificate)

Indicates type of security.

541 MaturityDate N LocalMktDate Maturity date for bonds

224 CouponPaymentDate N LocalMktDate Date interest is to be paid.

223 CouponRate N Price Value of the due coupon payment, expressed in the

currency of settlement
107 SecurityDesc N String Security description. This tag contains security

description in English on MOEX.
350 EncodedSecurityDescLen N Length Byte length of encoded (non-ASCII characters)

EncodedSecurityDesc (351) field.
351 EncodedSecurityDesc N data Russian language (non-ASCII characters) name for

the security. Encoded format is specified via the

MessageEncoding (347) field. If used, the ASCII

(English) representation should also be specified in

the SecurityDesc (107) field.

5217 StateSecurityID N String State Securities Identification Number.

5382 EncodedShortSecurityDescLen N Length Byte length of encoded (non-ASCII characters)

EncodedShortSecurityDesc (5383) field.

5383 EncodedShortSecurityDesc N data Short (non-ASCII characters) security name in

Russian language. Field encoding format specified

via the MessageEncoding (347) field. in message

header.

5556 BaseSwapPx N Price Base SWAP price.

5558 BuyBackPx N Price Base price for yield calculation. If indicated then the

yield is calculated using this price. If defined, the

field BuyBackDate appears in stream.

5559 BuyBackDate N LocalMktDate Date for yield calculation. If indicated then the yield

is calculated for this date

4.1.4 Instrument Extension
Table 5

Field name Type Valid values Comments

870 NoInstrAttrib N NumInGroup Number of repeating InstrAttribType (871) entries.

=>

871
InstrAttribType N int '8' (Coupon period);

'27' (Instrument Price Precision).
The code to represent the type of instrument

attribute. Required if NoInstrAttrib (870) > 0.
=>

872
InstrAttribValue N String Attribute value appropriate to the InstrAttribType (871)

field.

4.1.5 Market Segment
Table 6

Field name Type Valid values Comments

1310 NoMarketSegments N NumInGroup Number of Market Segments on which a security may

be traded.
=> 561 RoundLot N Qty The trading lot size of a security.

Tag

Req'd

Tag

Req'd

=> 1309 NoTradingSessionRules N NumInGroup Allows trading rules to be expressed by trading session.

=> =>

336
TradingSessionID N String(4) Identifier for trading board. Used to represent

SECBOARD. Note: an instrument with a given SecCode
may be traded in several trading boards (SecBoard).

You should use each Symbol (55)+TradingSessionID
(336) combination as an individual security with its own
order book and list of trades.

=> =>

625
TradingSessionSubID N String 'NA' – No trading

'O' – Opening period
'S' - Opening auction period
'C' – Closing period
'N' – Normal trading period
'L' – Closing auction period
'I' – Discrete auction period
'D' – Dark pool auction period
'E' – Trading at the closing auction

price period
'A’ - Auction: Order entry phase
‘a’ - Auction: Trade conclusion phase

‘b’ - Auction: Bookbuilding phase,

orders are locked

‘p’- Auction: After auction trade phase

Indicates the trading period

 Notes:
• Period is empty before the trading start and

after the trading is closed.
• Switching between periods typically involves a

short stop in trading, in which the period is not
defined (625=NA)

• The sequence and schedule of periods depends

on board code and on market conditions as

defined by the Exchange Trading rules.
• Period value of this component block indicates a

period that is running at the start of Security

definition
publishing cycle. Security status updates that
come after Security definitions publishing cycle

start should replace tag 625 values from

Security definitions feed.
=> =>

326
SecurityTradingStatus N int 18 – Not available for trading

118 – Opening period
119 - Opening auction period
18 – Trading closed

103 – Closing period
2 – Break in trading
17 – Normal trading
102 – Closing auction
106 – Dark pool auction

Trading status for a security

Notes:

• a break in any period is indicated by 326=2 and

period identifier in tag 625.
• Not available for trading and Trading Closed are

different technological states in the Trading

system. However they both disable trading

activity and thus have equal values of tag 326.

107 – Discrete auction
120 – Trading at Closing auction price

• Trading status value of this component block
indicates a trading statsus that existed at the

start of Security definition publishing cycle.
Security status updates that come after Security

definitions publishing cycle start should replace

tag 625 values from Security definitions feed.

=>=>9680 OrderNote N Char Level of listing

4.2. FIX Session-Level Messages

4.2.1 Logon (A)

Logon message from customer to MOEX:
Table 7

Field name Type Valid values Comments

<Standard Message

Header>
Y MsgType = 'A'

553 Username Y* String Userid or username.

554 Password Y* String User password.

1137 DefaultApplVerID Y String '9' (FIX50SP2) Specifies the service pack release being applied, by default,

to message at the session level.

Note: it is strongly recommended to identify your firm via meaningful string in SenderCompID field of a standard message header

in FIX TCP replay sessions.

Logon message from MOEX to customer:
Table 8

Tag

Req'd

Field name Type Valid values Comments

<Standard Message

Header>
Y MsgType = 'A'

108 HeartBtInt Y int Heartbeat interval (seconds).

1137 DefaultApplVerID Y String '9' (FIX50SP2) Specifies the service pack release being applied, by default,

to message at the session level.

4.2.2 Logout (5)
Table 9

Field name Type Valid values

Comments

<Standard Message

Header>
Y MsgType = '5'

58 Text N String Logout reason.

4.2.3 Heartbeat (0)
Table 10

Field name Type Valid values

Comments

<Standard Message

Header>
Y MsgType = '0'

Tag

Req'd

Tag

Req'd

Tag

Req'd

4.3. FIX Application-Level Messages

4.3.1 Security Definition (d)
Table 11

Field name Type Valid values Comments

<Standard Message Header> Y MsgType = 'd'

911 TotNumReports Y int Total number of Security Definition messages in a cycle.

component block

<Instrument>
Y The <Instrument> component block contains all the fields

commonly used to describe a security or instrument.
component block

<Instrument Extension>
N The <InstrumentExtension> component block identifies additional

security attributes that are more commonly found for Fixed

Income securities.
15 Currency N Currency Currency in which security is denominated

component block <Market

Segment>
N Contains all the security details related to listing and trading the

security, including its trading status and trading period as they
were at the start of Security Definitions publishing cycle. This
allows late joiners to get current security trading state if they have
missed earlier Security status (35=f) messages.

120 SettlCurrency N Currency Currency code of settlement denomination.

423 PriceType N int '1' (Percentage);

'2' (Per unit).
Code to represent the price type.
Note: for REPO with CCP this tag value is 1, but indicates the

REPO rate, not the price of underlying security (bond or share)

Tag

Req'd

64 SettlDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in YYYYMMDD

format

For Equities and FX in orders driven market: indicates settlement
date For Equities in quote driven market (negotiated): indicates

default

settlement date. Actual date may vary and is indicated for each
trade in the Trade List feed

For FX swaps: indicates settlement date for first trade.

5385 MarketCode N String Code of the market where instrument is traded.

Note: MarketCode indicates a group of trading boards
(SECBOARDS) with similar trading rules. MarketCode value may

coincide with <Market> value of tag 335 but have a different

purpose.

969 MinPriceIncrement N float Minimum price increase for a given exchange-traded Instrument.

5508 FaceValue N Amt Face value of security.

5850 OrigIssueAmt N Int Number of placed securities in the issue

7595 NoSharesIssued N Qty The number of issued shares.

9119 SettlFixingDate N Date The record date for shareholders

9982 DividendNetPx N Numeric Dividends,in the currency of payments

9696 QuoteText N Char Comments

4.3.2 Security Status (f)
Security Status messages indicate the changes in the current Trading status and period for a security. Security Status messages are published in a separate

ISF channel.
Note: to get current Security Status in a scenario of late join, please use the Instrument Definition feed as a snapshot channel for the fields 326 and 625, or

use TCP replay channel.
Table 12

Field name

Type Valid values Comments

Tag

Req'd

<Standard Message Header> Y MsgType = 'f'

55 Symbol Y String Ticker symbol. The Moscow Exchange internal instrument

identifier, SecCode.

Note: an instrument with a given SecCode may be traded in

several trading boards (SecBoard). You should use each

Symbol (55) +TradingSessionID (336) combination as an

individual security with its own order book and list of trades

and orders.

336

TradingSessionID N String Identifier for trading board. Used to represent SECBOARD.
Note: an instrument with a given SecCode may be traded
in several trading boards (SecBoard). You should use each

Symbol
(55)+TradingSessionID (336) combination as an individual
security with own order book and list of trades.

625 TradingSessionSubID N String 'NA' – No trading
'O' – Opening period
'S' - Opening auction period
'C' – Closing period
'N' – Normal trading period
'L' – Closing auction period
'I' – Discrete auction period
'D' – Dark pool auction period
'E' – Trading at the closing auction price

period
'A’ - Auction: Order entry phase

 ‘a’ - Auction: Trade conclusion phase

‘b’ - Auction: Bookbuilding phase, orders

are locked

‘p’- Auction: After auction trade phase

Indicates the trading period

Notes:

• Period is empty before the trading start and after the

trading is closed.
• Switching between periods typically involves a short

stop in trading, in which the period is not defined
(625=NA)

• The sequence and schedule of periods depends on

board code and market conditions as defined by the

Exchange Trading rules.

326 SecurityTradingStatus N int '18' – Not available for trading
'118' – Opening period
'119' - Opening auction period
'18' – Trading closed
'103' – Closing period
'2' – Break in trading

'17' – Normal trading
'102' – Closing auction
'106' – Dark pool auction
'107' – Discrete auction
'120' – Trading at Closing auction price

Trading status for a security

Notes:

• a break in any period is indicated by 326=2 and

period identifier is in tag 625.

• Not available for trading and Trading Closed are

different technological states in the Trading system.

However they both disable trading activity and thus

have equal values of tag 326.

5509 AuctionIndicator N Boolean 'Y' (Yes);

'N' (No).
Indicates that the primary distribution auction is being held for
the security. Primary distribution auction data is currently not

published in the feed.
Notes:

• 5509=N for ALL other auction types.
• Boolean values are encoded in FAST messages as

binary integers: 1 for Y, and 0 for N.

4.3.3 Trading Session Status (h)
Table 13

Field name Type Valid values Comments

<Standard Message

Header>
Y MsgType = 'h'

336 TradingSessionID Y String Identifier for Trading Session is used to represent
SECBOARD.

Tag

Req'd

340 TradSesStatus Y int '100' (Connection to MOEX market was

established); '101' (Lost connection to MOEX);
'102' (Connection to MOEX market was
established, trading system wasn't restarted);
'103' (Connection to MOEX market was

established, trading system was restarted).

The state of the trading session. Informs about the

connection state between the MOEX Market Data
Multicast FIX/FAST Platform and the trading system.
Note: Receiving the very unlikely message 340=103

means that Trading system has been started from

scratch and you must remove all feed data on your

side and start over.
58 Text N String Free format text string.

4.3.4 Market Data Request (V)
Table 14

Field name Type Valid values

Comments

<Standard Message Header> Y MsgType = 'V'

1180 ApplID N String OLR, TLR, MSR, ISF The channel ID.

1182 ApplBegSeqNum N SeqNum The beginning range of application sequence numbers.

1183 ApplEndSeqNum N SeqNum The ending range of application sequence numbers. If Market Date Request

is for one message then ApplBegSeqNum(1182) =

ApplEndSeqNum(1183).If the request is for all messages after a specified

message (but no more than a maximum number of sending messages),

then ApplEndSeqNum(1183) = '0' (infinity).

4.3.5 Market Data - Snapshot/Full Refresh (W)
Table 15

Field name Type Valid values Comments

<Standard Message Header> Y MsgType = 'W'

Tag

Req'd

Tag

Req'd

83 RptSeq Y int Sequence number of a message within report

series. Value equal to the RptSeq(83) in Market

Data - Incremental Refresh (X) message at the

time when the snapshot for a given instrument

has been prepared.
369 LastMsgSeqNumProcessed N SeqNum Value equal to the MsgSeqNum (34) from the

last Market Data - Incremental Refresh (X)

message which was published at the time of a

snapshot for a given instrument has been
prepared.
Note: this field value may be different for

different instruments within the same snapshot

publishing cycle.
340 TradSesStatus N int '100' (Connection to MOEX market was

established);
'101' (Lost connection to MOEX);
'102' (Connection to MOEX market was established,
trading system wasn't restarted);
'103' (Connection to MOEX market was established,

trading system was restarted).

The state of the trading session. Informs
about the connection state between the MOEX
Market Data Multicast FIX/FAST Platform and

the trading system.
Note: Receiving the very unlikely message

340=103 means that the Trading system has

been started from scratch and you must
remove all feed data on your side and start

over.

55 Symbol Y String Ticker symbol. The MOEX internal instrument

identifier, SecCode.
Note: an instrument with a given SecCode

may be traded in several trading boards

(SecBoard). You should use each Symbol

(55)+TradingSessionID (336) combination as

an individual security with its own order book

and list of trades.
893 LastFragment N Boolean 'N' (Not Last Message);

'Y' (Last Message).
Indicates whether this message is the last in a

sequence of messages in the snapshot for a

security.
Boolean values are encoded in FAST messages
as binary integers: 1 for Y, and 0 for N.

7944 RouteFirst N Boolean 'Y' (the first message in a set of messages

forming a snapshot for an instrument);

'N' (Not the first message in a set of messages

forming a snapshot for an instrument).

Indicate that a message is the first in a set

of messages forming a snapshot for an

instrument.

1682 MDSecurityTradingStatus N int 18 – Not available for trading
118 – Opening period
119- Opening auction period
18 – Trading closed
103 – Closing period
2 – Break in trading
17 – Normal trading
102 – Closing auction
106 – Dark pool auction
107 – Discrete auction
120 – Trading at Closing auction price

Current trading status for a security

Notes:

• a break in any period is indicated by

1682=2 and period identifier is in

tag 625
• Not available for trading and Trading

Closed are different technological

states in the Trading system.

However, they both disable trading

activity and thus have equal values of

tag 326.
• Switching between trading periods

typically involves a short stop in

trading in which the period is not

defined (625=NA)
• The sequence and schedule of

periods and trading status values

depends on SecBoard code (336) and

on market conditions as defined by

the Exchange Trading rules.
5509 AuctionIndicator N Boolean 'Y' (Yes);

'N' (No).
Indicates that the primary distribution auction
is being held for the security. Primary
distribution auction data is currently not
published in the feed.
Notes:

• 5509=N for ALL other auction types.
• Boolean values are encoded in FAST

messages as binary integers: 1 for Y,

and 0 for N.

451 NetChgPrevDay N PriceOffset Net change from previous day’s closing price

vs. last traded price.
336 TradingSessionID N String Identifier for trading board. Used to represent

SECBOARD.
Note: an instrument with a given SecCode

may be traded in several trading boards

(SecBoard). You should use each Symbol

(55)+TradingSessionID (336) combination as

an individual security with its own order book

and list of trades.
268 NoMDEntries Y NumInGroup Number of entries in Market Data message.

=> 269 MDEntryType Y char '0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value \ Fixings);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session (main or additional) High

Price);

'8' (Trading Session (main or additional) Low

Price);

'9' (Trading Session (main or additional) VWAP

Price);

'A' (Imbalance), expressed in number of

securities;

'B' (Trade Volume), expressed in number of

securities;

'J' (Empty book);

'N' (Session (main or additional) high bid);

'O' (Session (main or additional) low offer);

Type Market Data entry.

Notes:

• The availability of this field’s values

depends on market type (FX or

Equities), SecBoard code (336) and

the Exchange trading rules.

• Different feeds have subsets of

possible values, depending on the

data contents.

• Empty Book (269=J) indicates no data

for a security. Empty Book message

may be generated market-wide,

which indicates that you should

remove all previously collected data

and start over.

• Meaning of some values depends on

market type

(FX or Equities) and corresponding

trading rules

'Q' (Closing auction Clearing Price), the clearing

volume (271) is expressed in lots;

'W' (Opening/Closing auction price);

'c' (Opening/Closing auction volume), expressed

in number of securities;

'e' (prevention of uncovered trading for security)

'f' (market in opening auction period/ closing

auction buy order);

'g' (market in opening auction period/ closing

auction sell order);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

'l' (Market price 2); on FX market – FX fixing price

as calculated between 11:59 and 12:00 Moscow

time. 'm' (Market price); on FX market – FX fixing

price

'o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international

FX fixing price;

'r' (Official close price);

'v' (Total (for main or additional session) bid

volume);

'w' (Total (for main or additional session) offer

volume);

's' (Dark pool Auction price)

'x' (Dark Pool Auction volume), expressed in

number of securities

'y' (Accrued interest amount per the unit of

security at current date, expressed in rubles)

'u' (Duration);

'z' (Trades list).

• Off-book trading boards do not have

data in OrderList snapshot feed

(OLS).

• Off-book trading boards may have

market statistics data for a Symbol

taken from on-book trading boards for

this Symbol (market, current, WAP

prices, etc.)

• The set of field values may be

extended following the Trading

system updates. It is recommended to

allow in your code ignoring unknown

values of this field, and linked to such

entry values of other fields, until the

new field meaning can be supported

by your application.

• Indexes are published in Market

statistics (MSR and MSS) channels for

EQ market only. For FX market there

are fixing values in 269=3 (also

MSR\MSS channels).

• Previous trading day values are

indicated by additional tag 286

=> 278 MDEntryID N String Unique Market Data Entry identifier.
Notes:

• For trades (269=z) entries, this tag

contains a string with Exchange trade

number that is equal to trade numbers

in all trading interfaces
• For OrderList (OLR, OLS channels), it

contains a string identifier of Add Order

(279=0) update for an order, NOT

directly tied to the Exchange Order

number in trading interfaces.
• MDEntryID value for new Orders are

growing but not always for a number

up

=> 270 MDEntryPx C Price Price of the Market Data Entry.
Conditionally required if MDEntryType (269) is

not in ('A', 'B', 'J').

=> 271 MDEntrySize C Qty Quantity represented by the Market Data

Entry.
Conditionally required if MDEntryType (269) is

in ('0', '1', '2', 'A', 'B', 'Q', 'f', 'g', 'v', 'w').
Note: For 269='A', 'B', this field value is

expressed in number of securities. For all

other values of tag 269, this field value is

expressed in number of lots.

=> 272 MDEntryDate N UTCDateOnly Date of Market Data Entry.

=> 273 MDEntryTime N UTCTimeOnly Time of Market Data Entry.

 => 625 TradingSessionSubID N String 'NA' – No trading
'O' – Opening period
'S' - Opening auction period

'C' – Closing period
'N' – Normal trading period
'L' – Closing auction period
'I' – Discrete auction period
'D' – Dark pool auction period
'E' – Trading at the closing auction price period

 'A’ - Auction: Order entry phase
 ‘a’ - Auction: Trade conclusion phase

 ‘b’ - Auction: Bookbuilding phase, orders are

locked

 ‘p’- Auction: After auction trade phase

 Indicates the trading period
For updates and snapshots, Period value

indicates a period for an event reported, not

necessarily the currently running period.

In Trades feeds tag indicates a period when

trade was completed

=> 276 QuoteCondition N MultipleValueString 'C' (Exchange Best)

Space-delimited list of conditions describing a

quote.

=> 277 TradeCondition N MultipleValueString 'R' (Opening Price) ;
'AJ' (Official Closing Price);
'98' (Minimum value);
'99' (Maximum value).

Space-delimited list of conditions describing a

trade.

=> 286 OpenCloseSettlFlag N MultipleValueString '4' (Entry from previous business day) Flag that identifies a market data entry.

=> 40 OrdType N Char '1' (Market) Order type.
Used when MDEntryType (269) = 'f ', 'g '
Note: Market in Closing Auction orders are
activated and published in Order List feed in

Closing Auction period.
Matching occurs at the end of closing auction.
Other market orders are not published in the

feed because they never stay active.
=> 236 Yield N Percentage Yield percentage.

=> 64 SettlDate N* LocalMktDate Specific date of trade settlement

(SettlementDate) in YYYYMMDD format

Notes:

For trades – settlement date of regular trade

or negotiated deal.
For REPO trades – settlement date of the first

part of REPO.

=> 44 Price N Price REPO rate for REPO trades.

=> 423 PriceType N int '1' percentage Indicates price type (REPO rate in percentage)

for REPO trades.
=> 5154 CXFlag N Boolean 'Y' (Yes);

'N' (No).

Prevention of uncovered trading for security

 (269='e')

=> 5292 BidMarketSi ze N Int Total volume of market buy orders calculated

for currently expected auction price,

expressed in number of securities.
Used in closing auctions

=>

5293
AskMarketSize N Int Total volume of market sell orders, expressed

in number of securities used in closing

auctions.
=>

5384
AccruedInterestAmt N Amt Amount of accrued interest.

=>

5459

SettlType N Char MOEX settlement code for trades (269=z)

=>

5510
ChgFromWAPrice N PriceOffset Indicates the change from previous day's

weighted average price vs. last traded price.
=>

5558
BuyBackPx N Price For REPO deals - REPO value calculated in

roubles for the current date
(used in Trade List (269=z) feed).

=>

5559
BuyBackDate N LocalMktDate For REPO deals - the date of the second

part of REPO (used in Trade List (269=z)

feed). Published as REPO buyback
duration REPOTERM+<Settledate>

=>

5677
Repo2Px N Price Value of the 2nd (buy-back) REPO leg,

expressed in settlement currency (used in

Trade List (269=z) feed).

=>

5791
TotalVolume N Amt Total volume.

Used when MDEntryType (269)= 'f ', 'g'
Market in auction buy orders have money

volume instead of lot quantity. Other orders

use lot quantities.
=>

5902
EffectiveTime N UTSTimestamp Order activation time. The order or price level

with an activation time specified is not active

until that time.
=>

9820
StartTime N UTSTimestamp Auction start time. Used for Dark pool and

Discrete auctions
=>

6139
TotalNumOfTrades N int Total number of trades.

=>

6143
TradeValue N Amt Trade Value.

=>

7017
VolumeIndicator N char '0' (No orders)

'1' (Total orders value is less than N*)
'2' (Total orders value is greater than N*)

'3' (Order exists)

Volume indicator of Dark Pool auction active

orders. Used when MDEntryType(269)= 'v' or

'w'.
 N (variable)*- the large order volume factor

as determined by the Exchange
=> 9168 OfferNbOr N int Number of sell orders.

=> 9169 BidNbOr N int Number of buy orders.

=> 9412 OrigTime N int Indicates the microseconds portion of the

transaction’s registration time at the Matching

engine. Should be added to tag’s 273 value to

get microsecond precision timestamp. The

field is available in Orders and trades

channels.
=>

10504
OrderSide N char Side of aggressive order in TLR feed.

=> 1080 RefOrderID N char In TLR feed: MDentryID of OLR order entry for

an order being hit or taken.

=>

10505
OrderStatus N char 'O' (Active);

'T' (Order activation time hasn't come yet).
Describes the current state of order. Orders in

T status are not active and not used in

matching.
=>

10509
MinCurrPx N Price Minimum current price. Used to determine

condition when the short sales should be

prohibited.
=>

10510
MinCurrPxChgTime N UTCTimeOnly Time when minimum current price was

changed.

4.3.6 Market Data - Incremental Refresh (X)
Important processing notes:

• Publishing massive updates in traffic-shaped feeds may take some time.
• Incremental updates are not always published per events in the trading system. Some intermediate states in very fast sequences of changes per security may

be skipped and only resulting change is published in MSR or OLR feeds. TLR feed always contains all Add Trade messages.

• OLR feed does not publish updates for orders with zero lifetime: IOC, Market, FOK, and completely filled at registration time. OLR feed may skip publishing

Add and Delete updates for an order if its active state duration is less than approximately 100 microseconds.

• MSR feed updates have LastUpdateTime timestamp with the meaning of last processed transaction time, after which the update was generated. It is

guaranteed that MSR update with the LastUpdateTime equal to the maximum timestamp in tags 273 and 9412 of OLR or TLR update message corresponds to

result of the same event in the trading system. By comparing timestamps (tags 779, 273 and 9412) in updates for MSR, OLR, TLR messages you can

determine, which updates contain most recent data.

For massive events per an instrument like hitting multiple trades by single order, MSR feed is statistically published earlier than bulk OLR and TLR data in the

majority of cases. However, the MSR precedence is not guaranteed. Using LastUpdateTime you can determine that MSR is definitely published ahead of OLR

and TLR data and use MSR data for preliminary estimate of OLR and TLR changes.

For example, consider you receive MSR update with 779=170125080709000030 and with best sell price jumping up by 5 price steps. You have OLR state as

of 273=2017-01-25 08:07:08 и 9412=999900. To get new OLR state estimate for a time of 273=2017-01-25 08:07:09 and 9412=30 you can remove all sell

orders with prices less than new best sell price. You can correct estimate later after receiving OLR update. You can also estimate total trades count, volume,

and last trade data for an instrument by MSR update if tag 779 value is greater than the last received TLR feed timestamp in tags 273 and 9412.

• For channels where add, change and delete MDUpdateActions are possible (Orders) the correct state is achieved after processing the whole set of repeating

group entries in the message.

• FAST message length is limited by the network MTU size, current limitation is 1300 bytes. For massive updates, this results in splitting the data per several

FAST messages.

<Standard Message Header> Y MsgType = 'X'

779 LastUpdateTime N uInt64 For MSR channel the meaning of the field is a

timestamp of the last processed transaction in the

trading system, for which an update is generated as a

change from the previous state.

While comparing data from MSR, OLR, TLR incremental

updates you can now detect, which update contains

most recent data by comparing tag 779 value of MSR

channel to timestamps from tags 273 and 9412 in OLR

and TLR channels.

Field format is yyMMDDHHmmSSuuuuuu with fixed

length of 18 digits, where yy – last pair of digits in the

year number (17 for year 2017), MM – month number,

DD – day number, HH – hour number, mm – number of

minutes, SS – number of seconds, uuuuuu – fraction of

a second rounded to microseconds. Each part of

formatting template has fixed length. Zeroes are added

where necessary.

Example: 52=170125080709000030 is for a

timestamp of 2017-01-25 08:07:09.000030 in human-

readable format.

268 NoMDEntries Y NumInGroup Number of entries in Market Data message.

T
a

g

Field

name

R
e

q

`
d

Type Valid values Comments

=> 279 MDUpdateAction Y uInt

'0' (New);

'1' (Change);

'2' (Delete).

Type of Market Data update action.

=> 269 MDEntryType Y char '0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value\Fixings);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session (main or additional session)

High Price);

'8' (Trading Session (main or additional session)

Low Price);

'9' (Trading Session (main or additional session)

VWAP Price);

'A' (Imbalance), expressed in number of securities

'B' (Trade Volume, expressed in number of

securities);

'J' (Empty book);

'N' (Session (main or additional session) high bid);

'O' (Session (main or additional session) low offer);

'Q' (Closing auction clearing Price), the clearing

volume (271) is expressed in lots;

'W' (Opening/Closing auction price);

'c' (Opening/Closing auction volume), expressed in

number of securities;

'e' (prevention of uncovered trading for security)

'f' (market in opening auction period/ closing

auction buy order);

'g' (market in opening auction period/ closing

auction sell order);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

Type Market Data entry.

Notes:

• The availability of this field’s values depends on
market type (FX or Equities), SecBoard code

(336) and the Exchange trading rules.
• Different feeds have subsets of possible values,

depending on the data contents.
• Empty Book (269=J) indicates no data for a

security. Empty Book message may be

generated market-wide, which indicates that
you should remove all previously collected data

and start over.
• Meaning of some values depend on market

type (FX or Equities) and corresponding trading

rules
• Off-book trading boards do not have data in

Orderbook Snapshot (OBS) and OrderList
snapshot feeds (OLS).

• Off-book trading boards may have market
statistics data for a Symbol taken from on-book

trading boards for this Symbol (market,

current, WAP prices, etc.)
• The set of field values may be extended

following the Trading system updates. It is
recommended to allow in your code ignoring

unknown values of this field, and linked to such

entry values of other fields, until the new field
meaning can be supported by your application.

• Indexes are published in Market statistics (MSR

and MSS) channels for EQ market only. For FX

market there are fixing values in 269=3 (also

MSR\MSS channels).

• Preious trading day values are indicated by

additional tag 286

'l' (Market price 2); on FX market – FX fixing price

as calculated between 11:59 and 12:00 Moscow

time. 'm' (Market price); on FX market – FX fixing

price

'o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international

FX fixing price

'r' (Official close price);

'v' (Total (for main or additional session) bid

volume);

'w' (Total (for main or additional session) offer

volume);

's' (Dark pool Auction price)

'x' (Dark Pool Auction volume), expressed in

number of securities

'y' (Accrued interest amount per the unit of

security at current date, expressed in rubles)

'u' (Duration);

'z' (Trades list).

=> 278 MDEntryID N String Unique Market Data Entry identifier. Used, for example,

for
TRADENO.
Notes:

• For trades (269=z) entries, contains a string

with Exchange trade number that is equal to

trade numbers in all trading interfaces contains

a unique string identifier of price level
• For OrderList (OLR, OLS channels), contains a

string identifier of Add Order (279=0) update

for an order, NOT directly tied to the Exchange

Order number in trading interfaces.
• MDEntryID value for new Orders will be

growing for a number up.

=> 55 Symbol Y String Ticker symbol. The MOEX internal instrument identifier,
SecCode.
Note: an instrument with a given SecCode may be

traded in several trading boards (SecBoard). You

should use each Symbol (55)+TradingSessionID (336)

combination as an individual security with its own order

book and list of trades.
=> 83 RptSeq Y int Sequence number of a message within report series.

Incremented by one for each update entry and for

security status updates.
=> 270 MDEntryPx C Price Price of the Market Data Entry.

Conditionally required when MDUpdateAction (279) =
New(0) and MDEntryType (269) not in ('A', 'B', 'J').

=> 271 MDEntrySize C Qty Quantity represented by the Market Data Entry.
Conditionally required when MDUpdateAction (279) =

New (0) and MDEntryType (269) in ('0', '1', '2', 'A', 'B',

'Q', 'f', 'g', 'v', 'w').

Note: For 269=’A’,’B’, this field value is expressed in

number of securities. For all other values of tag 269,

this field value is expressed in number of lots.
=> 272 MDEntryDate N UTCDateOnly Date of Market Data Entry.

=> 273 MDEntryTime N UTCTimeOnly Time of Market Data Entry.

=> 336 TradingSessioID N String Identifier for trading board. Used to represent
SECBOARD.
Note: an instrument with a given SecCode may be

traded in several trading boards (SecBoard). You
should use each Symbol (55)+TradingSessionID (336)

combination as an individual security with its own order

book and list of trades.

=> 625 TradingSessionSu

bID
N String 'NA – No trading

'O – Opening period
'S - Opening auction period
'C – Closing period
'N – Normal trading period

'L – Closing auction period
'I' – Discrete auction period
'D' – Dark pool auction period
'E' – Trading at the closing auction price period
'A’ - Auction: Order entry phase
‘a’ - Auction: Trade conclusion phase

‘b’ - Auction: Bookbuilding phase, orders are

locked

‘p’- Auction: After auction trade phase

Indicates the trading period

For updates and snapshots, Period value indicates a

period for an event reported, not necessarily the

currently running period.

In Trades feeds tag indicates a period when trade was

completed

=> 276 QuoteCondition N MultipleValueString 'C' (Exchange Best)

Space-delimited list of conditions describing a quote.

=> 277 TradeCondition N MultipleValueString 'R' (Opening Price) ;
'AJ' (Official Closing Price);
'98' (Minimum value);
'99' (Maximum value).

Space-delimited list of conditions describing a trade.

=> 286 OpenCloseSettlFl

ag
N MultipleValueString '4' (Entry from previous business day) Flag that identifies a market data entry.

=> 40 OrdType N Char '1' (Market) Order type.
Used when MDEntryType (269) = 'f ', 'g'
Note: Market in Closing Auction orders are activated
and published in Order List feed in Closing Auction

period.
Matching occurs at the end of closing auction.
Out of auction periods, market orders are not published

in the feed because they never stay active.
=> 451 NetChgPrevDay N PriceOffset Net change from previous day closing price vs. last

traded price.
=> 236 Yield N Percentage Yield percentage.

=> 64 SettlDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in

YYYYMMDD format

Notes:

For trades – settlement date of regular trade or
negotiated deal.
For REPO trades – settlement date of first part of

REPO.
=> 44 Price N Price REPO rate for REPO trades

=> 423 PriceType N int '1' percentage Indicates price type (REPO rate in percentage) for REPO

trades.
=> 5292 BidMarketSize N Int Total volume of market buy orders calculated for

currently expected auction price, expressed in number

of securities.Used in closing auctions
=> 5293 AskMarketSize N Int Total volume of market sell orders, expressed in

number of securitiesUsed in closing auctions
=> 5384 AccruedInterestA

mt
N Amt Amount of accrued interest.

=>5154 CXFlag N Boolean 'Y' (Yes);

'N' (No).

Prevention of uncovered trading for security (269=’e’)

=> 5459 SettlType N Char MOEX settlement code for trades (269=z)

=> 5510 ChgFromWAPrice N PriceOffset Indicates the change from previous day's weighted

average price vs. last traded price.

=> 5558 BuyBackPx N Price For REPO deals - REPO value calculated in roubles for

the current date
(used in Trade List (269=z) feed).

=> 5559 BuyBackDate N LocalMktDate For REPO deals - the date of the second part of

REPO (used in Trade List (269=z) feed).

Published as REPO buyback duration

REPOTERM+<Settledate>

=> 5677 Repo2Px N Price Value of the 2nd (buy-back) REPO leg, expressed in
roubles (used in Trade List (269=z) feed).

=> 5791 TotalVolume N Amt Used when MDEntryType (269)= 'f', 'g'
Market in auction buy orders have money volume

instead of lot quantity. Other orders use lot quantities.
=> 5902 EffectiveTime N UTSTimestamp Order activation time. The order or price level with an

activation time specified is not active until that time.
=> 6139 TotalNumOfTrad

es
N int Total number of trades.

=> 6143 TradeValue N Amt Trade Value.

=> 7017 VolumeIndicator N char '0' (No orders)
'1' (Less then N* minimum order value)
'2' (Greater then N* minimum order value)

'3' (Order exists)

Volume indicator of Dark Pool auction active orders.

Used when MDEntryType(269)= 'v' or 'w'.

N (variable)*- the large order volume factor as

determined by the Exchange.
=> 9168 OfferNbOr N int Number of sell orders.

=> 9169 BidNbOr N int Number of buy orders.

=> 9412 OrigTime N int Indicates the microseconds portion of the transaction’s

registration time at the Matching engine. Should be

added to tag’s 273 value to get microsecond precision

timestamp. The field is available in Orders and Trades

channels.
=> 9820 StartTime N UTSTimestamp Auction start time. Used for Dark pool and Discrete

auctions
=> 10504 OrderSide N char Side of aggressive order in the TLR feed.

=> 1080 RefOrderID N char In TLR feed: MDentryID of OLR order entry for an

order being hit or taken.

=> 10505 OrderStatus N char 'O' (Active);
'T' (Order activation time hasn't come yet).

Describes the current state of order. Orders in T status

are not active and not used in matching.
=> 10509 MinCurrPx N Price Minimum current price. Used to determine condition

when the short sales should be prohibited.
=> 10510 MinCurrPxChgTi

me
N UTCTimeOnly Time when minimum current price was changed.

